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NONEQUILIBRIUM KINETICS OF THE ELECTRON�PHONONSUBSYSTEM OF A CRYSTAL IN A STRONG ELECTRIC FIELDAS A BASE OF THE ELECTROPLASTIC EFFECTV. I. Karas a;b*, A. M. Vlasenko a, V. I. Sokolenko a, V. E. Zakharov ;daNational Siene Center �Kharkov Institute of Physis and Tehnology�,National Aademy of Sienes of Ukraine61108, Kharkov, UkrainebKarazin Kharkov National University61022, Kharkov, UkraineLebedev Physial Institute, Russian Aademy of Sienes119991, Mosow, RussiadLandau Institute for Theoretial Physis, Russian Aademy of Sienes142432, Chernogolovka, Mosow Region, RussiaReeived Deember 25, 2014We present the results of a kineti analysis of nonequilibrium dynamis of the eletron�phonon system of arystal in a strong eletri �eld based on the proposed method of numerially solving a set of Boltzmann equa-tions for eletron and phonon distribution funtions without expanding the eletron distribution funtion in aseries in the phonon energy. It is shown that the eletri �eld ation exites the eletron subsystem, whihby transferring energy to the phonon subsystem reates a large amount of short-wave phonons that e�etivelyin�uene the lattie defets (point, lines, boundaries of di�erent phases), whih results in a redistribution of andderease in the lattie defet density, in damage healing, in a derease in the loal peak stress, and a dereasein the degradation level of the onstrution material properties.DOI: 10.7868/S004445101509014X1. INTRODUCTIONIn the 1960s, the phenomenon of an abrupt dereasein the plasti deformation resistane of metals in thease of exitation of their ondutivity eletron subsys-tem by irradiation or ondution of the eletron urrentof a high density j = 108�109 A/m2 was disovered.This phenomenon has been alled the eletroplasti ef-fet (EPE) [1℄. This e�et is already being applied inindustry in the proesses of drawing and rolling metal-li produts.Sine then, Soviet and Amerian sientists have ar-ried out a series of experiments on metal deformationunder the e�et on eletri urrent and also under ir-radiation of samples by aelerated eletrons. In thatexperiments, manifestation of the EPE under di�erentonditions was studied and also the dependene of the*E-mail: karas�kipt.kharkov.ua

phenomenon intensity was asertained on parameterssuh as:� kind of the sample being deformed,� temperature,� urrent density amplitude,� urrent pulse frequeny,� urrent pulse duration,� urrent diretion,� dopant onentration in the sample,� orientation of rystal samples being deformed,� deformation rate.Construting an ab initio theory of the EPE is om-pliated beause explaning the results of experimentson rystal deformation under the in�uene of eletriurrent requires taking di�erent mehanisms of the ur-rent in�uene on the deformation proesses into a-ount. These mehanisms inlude:� thermi in�uene of the urrent, resulting in ther-mal expansion of the sample and also in softening,� skin e�et,573



V. I. Karas, A. M. Vlasenko, V. I. Sokolenko, V. E. Zakharov ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015� pinh e�et, i. e., the in�uene of the pressure ofthe magneti �eld reated by the urrent inside thesample,� eletron�disloation interation that appears inthe momentum and energy transfer to disloations fromboth the eletrons and olletive exitations suh asplasmons,� phonon mehanism: the eletrons that gain en-ergy from the eletri �eld reate phonons that exitedisloation vibrations, whih an result in the disloa-tion depinning from stoppers.We enumerate some experimental regularities of theEPE.In its purest state, the EPE an be observed inmonorystals of Zn, Cd, Sn, and Pb. If pulsed ele-tri urrent with the density j = 102�103 A/mm2 ispassed through a sample of these materials, or if thesamples are irradiated by aelerated eletrons (withthe energy less than the atomi knok-out thresholdfrom the lattie node) in the slip diretion, then soft-ening of the samples is revealed, manifesting itself inspasmodi drops of deforming stress [1℄.For monorystals, a strongly expressed dependeneof the e�et magnitude on the orientation of the sam-ples being deformed is observed. At the rystal ori-entations suh that the basal slip is ompliated, themagnitude of the deforming stress drop if small and thestress from whih plasti deformation begins is large.The maximum stress drop magnitude an be obtainedfor medium rystal orientations that are haraterizedby an easy basal slip. In this ase, the stress of thedrop start has its minimum [1℄.The EPE magnitude dependene on the urrentdensity has a threshold harater, i. e., it beomes ap-parent at a partiular value of the pulsed urrent den-sity. This value depends on the sort of rystals beingdeformed and also on the temperature and on the de-formation rate. For zin at T = 77 K, it is equal to400�500 A/mm2 [1℄.The temperature dependene is almost absent ina wide range of temperatures. For zin, this rangeis 77�300 K. For titan, the threshold urrent den-sity magnitude from whih the e�et begins withooling from 300 to 78 K inreases by hundreds ofA/m2 [1℄. The EPE is sensitive to external fators.The e�et intensity is in�uened by surfae-ative me-dia. For example, the spei� rystallographi shift ofamalgamated zin monorystals at the temperature of300 K and under the in�uene of urrent pulses withj = 600�1000 A/mm2, the pulse repetition frequeny0.1�0.5 Hz, and the pulse duration tp = 10�4 s inreasesby 50�60% [1℄.

The dopant presene also a�ets the spasmodimetal deformation. As a result of doping, the dropmagnitude an inrease by dozens of perents (up to100%). Within the sope of a relatively small substi-tutional impurity, the magnitude of the e�et inreaseslinearly with the onentration, as has been shown inthe experiments with zin doped by admium from10�3 to 10�1 at.% (other impurities ontent did not ex-eed 2�10�3 at.%). The brittle strength of zin rystalsinreases by 50�70% depending on the dopant onen-tration. This fat an be onneted with the generalinrease in the ritial shearing stress in doped rystals[1℄. The inrease in the urrent pulse repetition fre-queny dereases the deforming stress threshold valuebut also dereases the stress drop magnitude. The pulseduration inrease at onstant amplitude inreases thedepth of stress drops. This phenomenon was registeredboth in stress relaxation tests and in reep tests [1℄.The main EPE regularities, revealed at monorys-tal deformation, an be observed in a weaker form alsoin experiments with polyrystal materials. However,the EPE magnitude dereases with struture re�ne-ment and even disappears in the nanorystal state [2℄.Hene, the EPE is a struture-sensitive phenomenon.Similar phenomena are observed under irradiation ofthe material by pulse pakets of aelerated eletrons.Plastiizing ation enhanes with the inrease in theeletron energy to the atomi knokout threshold. Un-der a further energy inrease, the intensity of the ef-fet dereases at the expense of radiation strengthen-ing. The ombination of urrent ation and irradiationresults in the intensi�ation of the metal strength losse�et [1℄.The mehanisms onneted with the ation of ele-tron wind on disloations, pinh e�et, and thermalin�uene of the urrent on deformation proesses arereviewed in detail in [1℄. It is shown that they are notsu�ient for a quantitative explanation of the EPE.In this paper, the phonon mehanism of the in�ueneon disloation is onsidered (see [3; 4℄). Some prelim-inary results of suh studies were reported at the In-ternational Conferene MSS-14 �Mode Conversion, Co-herent Strutures, and Turbulene� (November 24�27,2014, Mosow) and were also published in the onfer-ene proeedings [5; 6℄.The purpose of this paper is to show that the ex-perimentally observed regularities of the eletroplastie�et an be explained quantitatively if we take into a-ount the in�uene of nonequilibrium phonons exitedby eletrons that gain energy from the eletri �eld onthe disloations.574



ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015 Nonequilibrium kinetis of the eletron�phonon subsystem : : :2. THE INFLUENCE OF PHONONS ONDISLOCATIONSPlasti deformation of rystals under the ation ofexternal loads is in most ases aomplished by disloa-tion glide. The main equation desribing the kinetis ofthe plasti deformation proess is the Orovan modi�edequation (see, e. g., [7℄)_"d = bl�d�d(��); �� = � � �i; (1)where _"d is the strain rate, b is Burgers vetor, l isthe mean distane between stoppers, �d is the mobiledisloations density, �d(��) is the frequeny of the stop-pers overome by disloations, �� is the e�etive shearstress, and �i is the internal shearing stress in the glideplane. For thermodynami equilibrium, the expression�d(��; T ) has the form�d(��; T ) = �0d exp��H(��)kBT � ; (2)where kB is the Boltzmann onstant and T is the tem-perature. The expliit form of the H(��) funtion de-pends on the potential barrier model. To onsider amore general ase where the eletron and phonon sub-systems are not in equilibrium in general, we use theLandau�Ho�man model [8℄. The potential pit has aparaboli form,U(x) = ( �x2; jxj � xr;0; jxj > xr; �x2r = U0: (3)The displaement of the disloation segment oflength L under the stress � is desribed in the approxi-mation of elasti string vibrations (the Granato�Lükemodel [8; 9℄):M�2u�t2 +B�u�t � C �2u�y2 = b� + f(t): (4)Here, u(y; t) is the displaement of the disloation lineat a point y in the diretion x, M = �b2=2 is the e�e-tive mass of the length unit, � is the material density,B is the oe�ient of the dynami frition fore perunit length, C = Gb2=2 is the linear tension of thestring, G is the shear modulus, and f(t) is the fore ofthe random pushes exerted by the rystal on the unitdisloation length. The boundary onditions areu0(0; t) = ku(0; t); �u0(L; t) = ku(L; t);k = 2�C : (5)The equation is linear, and therefore its solution anbe written as a sumu(y; t) = ust(y) + uos(y; t);

where ust(y) is the stati de�etion aused by the ex-ternal stress �, and uos(y; t) stands for the osillationsunder the ation of a random fore:ust(y) = by(L� y)2C + bL�2Ck ;uos(y; t) = NXn=1Qn(t)�sin(qny) + qnk os(qny)� ;tg(qny) = q2n � k22qnk : (6)The quantity Qn(t) satis�es the equationM �Qn(t) +B _Qn(t) +M!2nQn(t) = fn(t);!2n = q2n CM : (7)We onsider a ��xing point� at y = 0. Let the seg-ment lengths on both sides of it be equal to L. Thenthe total de�etion at the ��xing point� is~u(0; t) = 2ust(y)+2uos(y; t) = ~ust(y)+ ~uos(y; t): (8)The ase of a random fore was onsidered in [10℄. Wenow provide some of the alulations for the referenepurpose. If a random event suh that Æ~u(0; t) � Æ~urours at some instant, then the ondition of overom-ing the obstale in the diretion on the loading ationis satis�ed. Let fn(t) be a stationary Gauss proess.Beause Eq. (7) is linear, Qn(t) and aordingly ~u(0; t)is also a stationary Gauss proess, for whih the meannumber of the instanes of exeeding a partiular valueÆ~ur per unit time is� = 12�s�	00(0)	(0) exp�� Æ~u2r2	(0)� ; (9)	(�) = 2 ~nXn=1 q2nk2Qn(t)Qn(t+ �) � 2 ~nXn=1 q2nk2 (�); (10)Æ~ur = xr � bL�Ck = xr �1� ��r� ;�r � CkxrbL ; (11)where 	(�) is the orrelation funtion of the randomproess Æ~u(0; t) expressed by means of the orrelationfuntion  (�) of the random proess Qn(t); 	00(0) isthe seond derivative with respet to � at � = 0. Forthe Fourier omponents (Qn)! of Qn(t), we an write (�) = 1Z�1 (Qn)2!e�i!�d!; (12)575



V. I. Karas, A. M. Vlasenko, V. I. Sokolenko, V. E. Zakharov ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015where (Qn)2! is de�ned by the relation(Qn)!(Qn)!0 = (Qn)2!Æ(! + !0): (13)Eah harmoni an be formally onsidered an indepen-dent vibrator with the frition � and frequeny !n,m �Q+ � _Q+m!2nQ = F; (14)where m is the proportionality oe�ient between thegeneralized momentum and the veloity _Q, � is thefrition oe�ient, and F is the random fore [11℄. Wehavem =ML�n2 ; � = BL�n2 ; F = fnL�n2 ;�n = 1� 2kL + q2nk2 : (15)For the Fourier omponent, we hene obtain the for-mula (Qn)2! = (F!)2m2(!2n � !2)2 + �2!2 : (16)The random fore spetral density an be found fromthe expression [8℄(F!)2 = �� ~!�12 +N(!)� : (17)Hene, to estimate the fore exerted by phonons ondisloations, we must �rst �nd the phonon distributionfuntion N(!).3. KINETIC EQUATIONSIn some works on the eletron�phonon subsystemdynamis in metal �lms, an assumption about theFermi form of the isotropi part of the eletron distri-bution funtion with time-dependent temperature wasused [12℄. Here, we do not make that assumption, andtherefore the distribution funtions an be not ther-modynamially equilibrium in general. In that ase,the behavior of eletrons and phonons is desribed bymeans of distribution funtions.To desribe the eletron�phonon system nonequilib-rium dynamis, it is neessary to solve a set of kinetiBoltzmann equations for the eletron and phonon dis-tribution funtions. For the eletron distribution fun-tion, the Boltzmann equation has the form�f�t + � �f�r + �f�p dpdt = Iee + Iep + Ied; (18)dpdt = eE(r; t); (19)

where � is the veloity, p is the momentum, t is time,r is the radius vetor, E is the eletri �eld strength,and e is the eletron harge. Here and hereafter, weassume that the magneti �eld is absent. We assumethat the eletri �eld and the eletron and phonon dis-tribution funtions are spatially uniform and that theeletron distribution funtion isotropization ours asa result of eletron�defet ollisions. In this ase, wean neglet the umklapp proesses.In (18), Iee is the eletron�eletron ollision inte-gral. In the general ase of quantum mehanis, it hasthe form [13�15℄Iee = 2(2�~)6 Z dp1dp2dp3W (p;p1jp2;p3)�� [f(p2)f(p3) (1� f(p1)) (1� f(p)) �� f(p)f(p1) (1� f(p2)) (1� f(p3))℄�� Æ("+ "1 � "2 � "3)Æ(p+ p1 � p2 � p3); (20)where f(p) are the oupation numbers andW (p;p1jp2;p3) = (2�~)32e4 �jp1�p3j2+a21��2 (21)is the matrix element that desribes the sreenedoulomb interation, whereW (p;p1jp2;p3) is the tran-sition probability for eletrons with momenta p2 andp3 to the state with momenta p and p1 as a result ofollision. For relatively small eletri �elds, the on-tribution from eletron�eletron ollisions is muh lessthan the ontribution from the eletron�phonon inter-ation, and we therefore do not take the eletron�elet-ron ollisions at short time intervals into aount inwhat follows. As was shown in [4℄, the role of theeletron�eletron ollision integral amounts to a redis-tribution of the energy aquired by eletrons from theeletri �eld. The lower estimate for the harateristieletron�eletron relaxation time an be obtained fromthe heat balane equationE2�S �ee = �pÆTand it turns out to be greater than the harateristitime of the eletron�phonon relaxation. Here, E is theeletri �eld intensity, �S is the spei� residual resis-tane measured in experiment (3 � 10�8 Ohm �m, whilethe spei� resistane aused by the eletron�phononollisions is several orders less), p is the spei� heatapaity at onstant pressure (in our ase, it is approx-imately equal to 25 J�kg�1 � K�1), � is the density ofour material, ÆT is the inrease in temperature, whihis omparable to our initial temperature, and Iep is theeletron�phonon ollision integral [13�15℄:576



ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015 Nonequilibrium kinetis of the eletron�phonon subsystem : : :Iep = Z dqw(q) fÆ ("(p+ q)� "(p)� ~
(q)) �� [f(p+ q) (1� f(p)) (N(q) + 1) �� f(p) (1� f(p+ q))N(q)℄ ++ Æ ("(p� q)� "(p) + ~
(q)) �� [f(p� q) (1� f(p))N(q)� f(p) �� (1� f(p� q)) (N(q) + 1)℄g : (22)Next, Ied is the eletron�impurity and eletron�defetollision integral. It an be obtained by setting ~
 = 0and N = 0 in Iep:Ied = Z dp0 wed(p0 � p)Æ ("(p0)� "(p))�� ff(p0)� f(p)g : (23)The phonon distribution funtion also satis�es the ki-neti equation�N(q)�t + �q �N(q)�r = Ipe + Ipp + Ipd; (24)where Ipe is the phonon�eletron ollision integ-ral [13�15℄Ipe = Z dpw(q) fÆ ("(p+ q)� "(p)� ~
(q)) �� [f(p+ q) (1� f(p)) (N(q) + 1)℄�� f(p) (1� f(p+ q))N(q)g : (25)The phonon�phonon and phonon�defet ollisionintegrals in the � -approximation have the followingform. The phonon�phonon ollision integral isIpp = ��pp(q) [N(q)�NT (q)℄ ;�pp(q) = �pp0q2; �pp0 = T 3saT 4DM ; (26)where s is the transverse sound veloity,M is the atommass, a is the lattie onstant, and TD is the Debyetemperature. The phonon�defet ollision integral isIpd = ��pd(q) hN(q)�N(q) i ; (27)where NT (q) = �exp ~
T � 1��1is the thermodynamially equilibrium phonon distribu-tion funtion (the Bose�Einstein funtion), andN(q) = 14� Z N(q) dOis the phonon distribution funtion averaged over an-gles.

Beause the eletron�impurity, eletron�defet, andeletron�phonon ollisions result in the distributionfuntion isotropization, we seek it in the form of a sumof an isotropi funtion and a small anisotropi addi-tion: f(p; t) = f ("(p); t) + f1 ("(p); t) pp ; (28)w(q) = w0q; w0 = "21A2(2�~)2~�s; ~
(q) = sq; (29)where "1A is the deformation potential onstant, whihin our partiular model ase is equal to 2"F=3, with "Fbeing the Fermi energy. We �nally obtainIpp = ��pd0q [N(q)�NT (q)℄ ; (30)Ied�f1(")pp� = ��edf1(")pp ; �ed = �sne2m ; (31)where m is the e�etive eletron mass and �ed == 3 � 1013 s�1 is the eletron�impurity ollision fre-queny, whih in the given ase (of low tempera-tures) determines the eletron distribution funtionisotropization. Also,Iep �f1(")pp� = ��(")f1(")pp ;�(") = �w0pm"3 p8m"Z0 dq q3 �N(q) + 12� : (32)For the anisotropi addition, we have the equation�f1�t pp � eE� �f0�" pp = ��edf1(")pp : (33)The eletron�phonon ollision frequeny �ep = 1:18 �� 1010 s�1 is muh less than the eletron�defet olli-sion frequeny. Collisions with defets and impuritiesour very often, at a time sale that is small om-pared to the harateristi time of the interation ofphonons with eletrons, and therefore the anisotropiaddition an be onsidered stationary and spatially uni-form. For this statement to be true, the impurity on-entration must be muh greater than the onentra-tion at whih the eletron�defet ollision frequeny isequal to the eletron�phonon ollision frequeny. Inour ase, this onentration has to be greater than1:77 � 1017 m�3, that is, several orders less than forthe onsidered experiments. As a result, we obtain the�nal set of two equations for the isotropi eletron andaousti phonon distribution funtions [3; 4; 16℄, whihhas to be solved without expanding the eletron distri-bution funtion in a Taylor series:10 ÆÝÒÔ, âûï. 3 (9) 577



V. I. Karas, A. M. Vlasenko, V. I. Sokolenko, V. E. Zakharov ÆÝÒÔ, òîì 148, âûï. 3 (9), 2015�f�~t � 4�~" 1~"1=2 ��~" �~"3=2 �f�~" � = 18 ��5=2 ��8><>: 1p~" "�Zp~" d~"ph~"2ph [f (~"� ~"ph)N(~"ph) ++ f(~") (f(~"� ~"ph)�N(~"ph)� 1)℄ ++ 1p~" "+Z0 d~"ph~"2ph [f (~"+ ~"ph) (N(~"ph) + 1) �� f(~") (f (~"+ ~"ph) +N(~"ph))℄9>=>; ; (34)�N(q)�~t = 12� 1Z"0 d~" [(f(~"+ ~"ph)� f(~"))N(~"ph) ++ f(~"+ ~"ph) (1� f(~"))℄ : (35)Here,� = ms22kBTe ; �~" = e2E2�ep06m�edkBTe ; ~" = "kBTe ;~"ph = "phkBTe ; ~t = t�ep0 ;�ep0 = (2�~)3~��m3s"21A = 3:446 � 10�7 s:The integration limits, whih are obtained in aor-dane with the energy onservation law, are"� = min h4�p~"�� �� ; ~"phDi ;"+ = min h4�p~"�+ �� ; ~"phDi ;"0 = ~"2ph16� � ~"ph2 + �: (36)The distribution funtions of eletrons f(") andphonons N(q) are dimensionless quantities that satisfythe normalization onditions12�2 �2m~2 �3=2 1Z0 "1=2f(") d" = n; (37)where n is the eletron density in the valene band (formetals, also the ondutivity band, beause it is onlypartially �lled),12�2 1~3 qDZ0 q2N(q) dq <1; (38)

where qD = �~a (39)is the Debye phonon momentum. Condition (38) ex-presses the fat that the number of phonons does nothave to be onserved. All quantities are taken fornikel: s = 2:96 � 105 m/s is the transverse sound ve-loity, n = 2:5 � 1022 m�3 is the ondutivity ele-tron onentration, a = 3:5 � 10�8 m, and ��1s == 0:333 � 106 S/m.The thermodynamially equilibrium eletron en-ergy distribution funtion is the Fermi�Dira funtionf0(") = �exp "� "FkbTe + 1��1 : (40)For nikel, "F = 5 � 10�19 J.4. NUMERICAL SOLUTION OF THE SET OFKINETIC EQUATIONS FOR ELECTRONAND PHONON DISTRIBUTIONFUNCTIONSFor the numerial solution of Eqs. (34), (35), the �-nite-di�erene method of the �rst-order approximationover time and seond-order over spatial oordinates wasused. System (34), (35) was represented by the follow-ing set of di�erene equations [17℄:f�+1i � f�i~� = 6�~"f�+1i+1 � f�+1i�12~~" ++ 4~"i�~"f�+1i+1 � 2f�+1i + f�+1i�1~2~" + Ji; (41)Ji = 18p~"i�5 12 8<:Xj=0 h~"ph ~"2phj �� [f�kNj + f�i (f�k �Nj � 1)℄ ++Xj=0 h~"ph ~"2phj [f�l (Nj + 1)� f�l (f�l +Nj)℄ ++Xj=0 h~"ph ~"2phj+1 �f�k�1Nj+1+f�i (f�k�1�Nj+1�1)�++Xj=0 h~"ph ~"2phj+1 �f�l+1(Nj+1 + 1) �� f�i (f�l+1 +Nj+1)�9=; ; (42)N�+1j �N�j~� = 12� 12Xi h~" �(f�k � f�i )N�j ++ f�k (1�f�i )+(f�k+1 � f�i+1)N�j +f�k+1(1�f�i+1)� ; (43)578
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of the phonon distribution funtion in formula (17) and�nd the random fore spetral density. Then we sub-stitute this result in (16) and �nd(Qn)2! = (�=�)~!(1=2 +N(!))m2(!2n � !2)2 + �2!2 : (47)Knowing (Qn)2!, we alulate the orrelation fun-tion  (0) and its seond derivative using formula (12): (0; N(!)) == lim�!0 1Z�1 (�=�)~!(1=2+N(!))m2(!2n�!2)2+�2!2 e�i!�d!; 00 (0; N(!)) == � lim�!0 1Z�1 (�=�)~!3(1=2+N(!))m2(!2n�!2)2+�2!2 e�i!�d!: (48)
After that, we �nd 	(�) and 	00(0) using (10):	(0; N(!)) = 2 ~nXn=1 q2nk2 (0; N(!)) ; (49)	00(0; N(!)) = 2 ~nXn=1 q2nk2 00 (0; N(!)) : (50)After substituting (9) in (1), we have the following rela-tion that allows us to �nd Æ~u2r when all other quantitiesare known:_"d = bl�d 12�s�	00 (0; N(!))	 (0; N(!)) �� exp�� Æ~u2r2	 (0; N(!)) � ; (51)Æ~ur (N(!)) ==vuut2	 (0; N(!)) ln bl�d2� _"ds�	00 (0; N(!))	 (0; N(!)) !: (52)Finally, we �nd � from (11):� = �r �1� Æ~ur(N(!))xr � ; (53)�� (N(!)) = �ext � � (N(!)) : (54)The alulation results and experimental data wereompared for nikel at the following values of ex-perimental parameters: the applied external stress�ext = 68:885 MPa, _"d = 1:19 � 10�4 s�1, b == 3:52 � 10�8 m, and the produt l�d = 435 m�1,581
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