ОРИЕНТАЦИОННАЯ ДИНАМИКА ФЕРРОНЕМАТИЧЕСКОГО ЖИДКОГО КРИСТАЛЛА ВО ВРАЩАЮЩЕМСЯ МАГНИТНОМ ПОЛЕ

А. Н. Бойчук, А. Н. Захлевных^{*}, Д. В. Макаров

Пермский государственный национальный исследовательский университет 614990, Пермь, Россия

Поступила в редакцию 1 апреля 2015 г.

В рамках континуальной теории исследовано поведение ориентационной структуры ферронематика в однородном вращающемся магнитном поле. Получена нестационарная система уравнений, описывающая динамику ферронематика. Найдены зависимости углов поворота директора и намагниченности ферронематика от скорости вращения поля при различных значениях материальных параметров. Обнаружены два режима вращения ориентационной структуры ферронематика: синхронный и асинхронный. При синхронном режиме директор вращается с частотой магнитного поля и постоянной фазовой задержкой. Асинхронный режим характеризуется запаздыванием по фазе, зависящим от времени. Получена зависимость критической угловой скорости вращения магнитного поля, определяющей границу существования синхронного и асинхронного режимов, от напряженности магнитного поля.

DOI: 10.7868/S0044451015090187

1. ВВЕДЕНИЕ

Жидкие кристаллы (ЖК) представляют собой анизотропные мягкие материалы, обладающие спонтанным ориентационным порядком, поэтому они являются привлекательными средами для диспергирования коллоидных частиц различной природы (ферромагнитных, сегнетоэлектрических, углеродных нанотрубок и др.) [1]. Жидкокристаллическая матрица вызывает упорядочение внедренных в нее анизометричных частиц, что существенно меняет отклик композитной системы на внешние воздействия и открывает новые возможности использования ЖК-материалов в устройствах отображения информации и оптоэлектронике. Такие суспензии весьма чувствительны к внешним воздействиям и обладают необычными электрическими, магнитными и оптическими свойствами, отличающимися от свойств исходных компонент и меняющимися под действием внешних полей. Новые приложения таких материалов существенно зависят от способности контролировать ориентационный отклик и пространственное распределение частиц в ЖК-матрице.

Одним из примеров таких систем являются ферронематики — коллоидные суспензии магнитных наночастиц в нематических жидких кристаллах (НЖК). Они были теоретически предсказаны в работе [2], заложившей основы континуального описания ферронематиков. С этой пионерской работы стала очевидной широта приложений для ферронематиков, так как их магнитная восприимчивость на несколько порядков превышает восприимчивость чистых ЖК. Первые экспериментальные попытки синтеза ЖК-ферросуспензий оказались не вполне удачными, однако в последние десять лет в связи с разработкой новых методов стабилизации наночастиц в термотропных ЖК появились успешные экспериментальные реализации ферронематиков, которые привели к многочисленным экспериментальным и теоретическим работам по исследованию их физических свойств и индуцируемых внешними полями фазовых переходов (см. обзорную статью [1]). В настоящее время экспериментальный поиск осуществляется по двум направлениям [1, 3–7]: используются новые мезогенные соединения в качестве матрицы и новые типы частиц, внедренных в ЖК (игольчатые наночастицы феррита и углерод-

^{*}E-mail: anz@psu.ru

ные нанотрубки, наполненные ферромагнетиком). Такие суспензии могут использоваться для создания оптических элементов, реагирующих по типу ЖК-дисплея на магнитное поле, что позволит радикально упростить визуализацию полей и использовать эти среды для отображения информации.

Если статические свойства ферронематиков достаточно хорошо исследованы [3–16], то изучению их динамического поведения посвящено совсем немного работ [17–22], касающихся, главным образом, релаксационных явлений и совместному ориентирующему действию магнитного поля и сдвигового потока.

В настоящей работе рассматривается влияние вращающегося магнитного поля на ориентационную структуру ферронематиков. В физике ЖК этот эффект — увлечение ЖК вращающимся магнитным полем, известный как эффект Цветкова, — достаточно хорошо изучен в различных геометриях [23], так же как и в физике изотропных магнитных жидкостей [24, 25].

2. УРАВНЕНИЯ ОРИЕНТАЦИОННОЙ ДИНАМИКИ

Для описания динамики ориентационной структуры ферронематического ЖК будем использовать обобщенную континуальную теорию Эриксена-Лесли [2,9,18]. В этом случае уравнение движения можно записать следующим образом:

$$\rho \frac{dv_i}{dt} = \partial_k \sigma_{ki},\tag{1}$$

где ρ — плотность, v_i — скорость, $d/dt = \partial/\partial t + +v_k \partial_k$ — полная производная по времени, $\sigma_{ki} = \sigma'_{ki} + \sigma^{(e)}_{ki}$ — тензор напряжений, являющийся суммой тензора вязких напряжений σ'_{ki} и тензора ориентационных напряжений Эриксена $\sigma^{(e)}_{ki}$. Здесь введено обозначение $\partial_k \equiv \partial/\partial x_k$ и далее всюду предполагается суммирование по повторяющимся тензорным индексам.

Уравнение несжимаемости имеет вид

$$\partial_i v_i = A_{ii} = 0, \tag{2}$$

где $A_{ik} = (\partial_k v_i + \partial_i v_k)/2$ — симметричная часть тензора градиентов скоростей.

Выражение для тензора вязких напряжений σ'_{ki} в предположении линейности обобщенных потоков по отношению к сопряженным им обобщенным силам может быть записано в следующем виде:

$$\sigma'_{ki} = \alpha_1 n_k n_i n_l n_m A_{lm} + \alpha_2 n_k N_i + \alpha_3 n_i N_k + \alpha_4 A_{ki} + \alpha_5 n_k n_l A_{li} + \alpha_6 n_i n_l A_{lk}.$$

Здесь **n** — директор НЖК, т. е. единичный вектор, характеризующий направление преимущественной ориентации длинных осей молекул нематика. Коэффициенты α_s имеют размерность вязкости и носят название коэффициентов Лесли, однако только пять из них являются независимыми, так как между ними существует связь $\alpha_2 + \alpha_3 = \alpha_6 - \alpha_5$ [23]. Вектор **N** представляет собой скорость изменения директора **n** относительно движущегося ЖК и определяется соотношением

$$N_i = \frac{dn_i}{dt} - \omega_{ik} n_k,$$

где $\omega_{ik} = (\partial_k v_i - \partial_i v_k)/2$ — антисимметричная часть тензора градиентов скоростей.

Тензор напряжений Эриксена $\sigma_{ki}^{(e)}$, входящий в σ_{ki} , дается выражением

$$\sigma_{ki}^{(e)} = -p\delta_{ki} - \frac{\partial F}{\partial(\partial_k n_l)} \partial_i n_l,$$

где p — давление, δ_{ki} — символ Кронекера, F — объемная плотность свободной энергии ферронематика, которую в случае мягкого сцепления между магнитными частицами и ЖК можно записать в виде [2, 9]

$$F = F_{1} + F_{2} + F_{3} + F_{4} + F_{5},$$

$$F_{1} = \frac{1}{2} \left[K_{1} (\operatorname{div} \mathbf{n})^{2} + K_{2} (\mathbf{n} \cdot \operatorname{rot} \mathbf{n})^{2} + K_{3} (\mathbf{n} \times \operatorname{rot} \mathbf{n})^{2} \right],$$

$$F_{2} = -M_{s} f \mathbf{m} \cdot \mathbf{H}, \quad F_{3} = -\frac{1}{2} \chi_{a} (\mathbf{n} \cdot \mathbf{H})^{2},$$

$$F_{4} = \frac{k_{B} T}{v_{f}} f \ln f, \quad F_{5} = \frac{w}{d} f (\mathbf{n} \cdot \mathbf{m})^{2}.$$
(3)

Здесь К1, К2 и К3 — модули ориентационной упругости ЖК (константы Франка), M_s — намагниченность насыщения материала магнитных частиц, f объемная доля частиц в суспензии, т — единичный вектор намагниченности суспензии, χ_a — анизотропия диамагнитной восприимчивости нематика (далее мы полагаем, что $\chi_a > 0$, поэтому директор стремится ориентироваться вдоль поля **H**), v_f — объем феррочастицы, k_B — постоянная Больцмана, T температура, w — поверхностная плотность энергии сцепления молекул ЖК с поверхностью магнитных частиц, d — диаметр феррочастицы. Мы полагаем w > 0, поэтому в отсутствие магнитного поля минимуму свободной энергии (3) отвечает взаимная ортогональная ориентация директора и намагниченности $(\mathbf{n} \perp \mathbf{m})$, которую называют гомеотропным сцеплением магнитных частиц с ЖК-матрицей.

Слагаемое F₁ представляет собой объемную плотность энергии ориентационно-упругих деформаций поля директора (потенциал Франка), F_2 — объемная плотность энергии взаимодействия магнитного поля Н с магнитными моментами $\mu = M_s v_f \mathbf{m}$ феррочастиц (дипольный механизм влияния магнитного поля на ферронематики), F₃ — объемная плотность энергии взаимодействия магнитного поля Н с нематической матрицей (квадрупольный механизм влияния магнитного поля), F_4 — вклад энтропии смешения идеального раствора магнитных частиц в объемную плотность энергии, F₅ — объемная плотность энергии ориентационного взаимодействия магнитных частиц с директором. Магнитными диполь-дипольными взаимодействиями будем пренебрегать вследствие малой объемной доли феррочастиц в суспензии.

Уравнение движения директора **n** имеет вид [23]

$$h_i^{(n)} = \gamma_1 N_i + \gamma_2 n_k A_{ik}, \tag{4}$$

где $\gamma_1 = \alpha_3 - \alpha_2$ и $\gamma_2 = \alpha_2 + \alpha_3 -$ коэффициенты вращательной вязкости нематика.

Уравнение движения единичного вектора намагниченности **m** согласно [18] записывается в виде

$$h_i^{(m)} = (\gamma_{1p} M_i + \gamma_{2p} m_k A_{ki}) f, \tag{5}$$

где γ_{1p} и γ_{2p} — коэффициенты вращательной вязкости магнитных частиц, а вектор $M_i = dm_i/dt - \omega_{ik}m_k$ характеризует скорость изменения единичного вектора намагниченности **m** относительно движущегося ЖК.

Молекулярные поля $h_i^{(n)}$ и $h_i^{(m)}$, входящие в уравнения движения директора (4) и намагниченности (5), определены следующим образом:

$$h_i^{(m)} = -\frac{\partial F}{\partial n_i} + \partial_k \frac{\partial F}{\partial (\partial_k n_i)},$$
$$h_i^{(m)} = -\frac{\partial F}{\partial m_i} + \partial_k \frac{\partial F}{\partial (\partial_k m_i)}.$$

Вследствие единичности векторов **n** и **m** вариация свободной энергии должна проводиться при дополнительных условиях $\mathbf{n}^2 = 1$ и $\mathbf{m}^2 = 1$, учитываемых методом множителей Лагранжа.

Замыкает систему уравнение диффузии магнитных частиц в ЖК-матрице (закон сохранения числа магнитных частиц) [18]:

$$\frac{\partial f}{\partial t} + \partial_i (U_i f) = 0, \qquad (6)$$

где $U_i = -D\partial_i (v_f F^{(m)}/f)$ — скорость феррочастиц относительно ЖК-матрицы, D — коэффициент переноса, $F^{(m)} = F_2 + F_4 + F_5$ — вклад магнитных частиц в свободную энергию F ферронематика (3).

Таким образом, уравнения (1)–(6) представляют собой полную систему уравнений динамики ферронематика.

3. ФЕРРОНЕМАТИК ВО ВРАЩАЮЩЕМСЯ МАГНИТНОМ ПОЛЕ

Пусть ферронематический ЖК находится в однородном магнитном поле $\mathbf{H} = H(-\sin \omega t, \cos \omega t, 0),$ вращающемся с постоянной угловой скоростью ω вокруг оси *z* (рис. 1). Рассматривая поведение директора и намагниченности вдали от поверхностей, ограничивающих образец ферронематика, будем пренебрегать влиянием границ и градиентами директора. В этом случае распределение магнитных частиц в образце можно считать однородным, т.е. эффекты магнитной сегрегации отсутствуют. Будем полагать, что ферронематик имеет положительную плотность энергии сцепления w, так что в отсутствие внешних полей минимум свободной энергии (3) достигается при ортогональной ориентации директора и намагниченности $(\mathbf{n} \perp \mathbf{m})$, которую называют гомеотропным сцеплением. По этой причине углы поворота директора $\varphi(t)$ и намагниченности $\psi(t)$ удобно отсчитывать от взаимно перпендикулярных осей (рис. 1*a*):

$$\mathbf{n} = (\cos\varphi(t), \sin\varphi(t), 0), \mathbf{m} = (-\sin\psi(t), \cos\psi(t), 0).$$
(7)

В рассматриваемом случае $\chi_a > 0$ в магнитном поле директор **n** и намагниченность **m** будут стремиться

Рис.1. Ферронематик во вращающемся магнитном поле

ориентироваться вдоль поля, чему препятствует гомеотропное сцепление магнитных частиц с ЖК-матрицей, приводя к конкуренции между квадрупольным и дипольным механизмами воздействия магнитного поля на ферронематик.

Будем считать, что меняться со временем могут только директор и намагниченность, при этом сам ферронематик остается неподвижным, т. е. скорость v ЖК-суспензии равна нулю. Для рассматриваемого вида решений (7) уравнения движения ферронематика (1) выполняются тождественно. Уравнения движения директора (4) и единичного вектора намагниченности (5) с учетом соотношений (7) примут вид

$$\gamma_1 \frac{\partial \varphi}{\partial t} = -\frac{w}{d} f \sin 2(\varphi - \psi) - \frac{1}{2} \chi_a H^2 \sin 2(\omega t - \varphi),$$

$$\gamma_{1p} \frac{\partial \psi}{\partial t} = \frac{w}{d} \sin 2(\varphi - \psi) + M_s H \sin(\omega t - \psi).$$
(8)

В случае отсутствия магнитной примеси (f = 0) из системы (8) получаем, как и должно быть, уравнение для угла поворота директора в чистом нематике, помещенном во вращающееся магнитное поле [23]:

$$\gamma_1 \frac{\partial \varphi}{\partial t} = -\frac{1}{2} \chi_a H^2 \sin 2(\omega t - \varphi)$$

Анализ решений этого уравнения показывает [23], что при угловой скорости вращения поля $\omega \leq \omega_c \equiv \equiv \chi_a H^2/2\gamma_1$ директор следует за полем с той же угловой скоростью ω , но отстает от него по фазе на постоянное значение (синхронный режим вращения). Если скорость вращения поля $\omega > \omega_c$, то директор движется вслед за магнитным полем с более сложной, зависящей от времени, фазовой задержкой (асинхронный режим).

Для удобства теоретического анализа запишем систему уравнений (8) в безразмерном виде. Для этого в качестве единицы измерения напряженности поля выберем величину $H_0 = M_s f/\chi_a$, при которой дипольный F_2 и квадрупольный F_3 вклады в объемную плотность свободной энергии F ферронематика (1) становятся одного порядка [10]. В магнитном поле $H \approx H_0$ происходит смена основного механизма влияния поля на систему от дипольного (влияние на магнитные моменты частиц, $H \leq H_0$) к квадрупольному (влияние на диамагнитную НЖК-матрицу, $H > H_0$) и наоборот. Кроме того, в терминах угла $\tau = \omega t$, описывающего отклонение вектора напряженности поля **H** от оси y, система уравнений (8) может быть записана следующим образом:

$$\beta \dot{\varphi} = -\sigma \sin 2(\varphi - \psi) - \frac{1}{2}h^2 \sin 2(\tau - \varphi), \qquad (9)$$

9 (0) 9015

$$f\gamma\beta\dot{\psi} = \sigma\sin 2(\varphi - \psi) + h\sin(\tau - \psi).$$
(10)

Здесь точкой обозначена производная по au и введены безразмерные величины

NVOT #

$$h = \frac{H}{H_0}, \quad \beta = \frac{\chi_a \gamma_1}{M_s^2 f^2} \omega,$$

$$\sigma = \frac{w \chi_a}{M_s^2 f d}, \quad \gamma = \frac{\gamma_{1p}}{\gamma_1},$$
 (11)

где h представляет собой безразмерную напряженность магнитного поля, β — безразмерная угловая скорость вращения магнитного поля, σ — безразмерная энергия сцепления магнитных частиц с ЖК-матрицей, а параметр γ характеризует отношение коэффициентов вращательной вязкости магнитных частиц и нематика.

Полагая согласно [1–3, 16, 18] анизотропию диамагнитной восприимчивости $\chi_a \approx 10^{-7}$, объемную долю магнитных частиц $f \approx 10^{-6}$, намагниченность насыщения материала магнитных частиц $M_s \approx$ $\approx 10^2$ Гс, коэффициенты вращательной вязкости $\gamma_1 \approx 0.1$ П и $\gamma_{1p} \approx 1$ П, поверхностную плотность энергии сцепления молекул нематика с магнитными частицами $w \approx 1$ эрг/см², поперечный диаметр магнитных частиц $d \approx 10^{-5}$ см, угловую скорость вращения магнитного поля $\omega = 1$ рад/с, находим $\gamma \approx 10$, $\sigma \approx 1$ и $\beta \approx 1$. Из этих оценок видно, что $f\gamma\beta \ll 1$, поэтому можно пренебречь слагаемым $f\gamma\beta$ в левой части уравнения (10). Тогда система (9), (10) примет следующий вид:

$$\beta \dot{\varphi} = -\sigma \sin 2(\varphi - \psi) - \frac{1}{2}h^2 \sin 2(\tau - \varphi), \qquad (12)$$
$$h \sin(\tau - \psi) = -\sigma \sin 2(\varphi - \psi).$$

Эти уравнения описывают динамику углов ориентации директора и намагниченности в зависимости от энергии сцепления σ , напряженности поля h и угловой скорости вращения β магнитного поля.

Для анализа ориентаций директора \mathbf{n} и намагниченности \mathbf{m} относительно магнитного поля \mathbf{H} удобно перейти во вращающуюся систему координат и ввести новые переменные (рис. 16):

$$\delta_1 = \tau - \varphi + \frac{\pi}{2}, \quad \delta_2 = \tau - \psi, \quad \theta = \delta_1 - \delta_2.$$
(13)

Здесь δ_1 и δ_2 — углы, характеризующие запаздывание директора и намагниченности относительно вектора напряженности магнитного поля, θ — угол между директором и единичным вектором намагниченности.

С учетом соотношений (13) система уравнений (12) принимает вид

$$\beta(1 - \dot{\delta}_1) = -\sigma \sin 2(\delta_1 - \delta_2) + \frac{1}{2}h^2 \sin 2\delta_1, \qquad (14)$$
$$h \sin \delta_2 = -\sigma \sin 2(\delta_1 - \delta_2).$$

3.1. Стационарные уравнения динамики ферронематика

В стационарном случае ($\dot{\varphi} = 1$, т.е. $\dot{\delta}_1 = 0$) директор и намагниченность вращаются с постоянной угловой скоростью β вслед за магнитным полем, поэтому система уравнений (14) принимает вид

$$\beta = -\delta \sin 2(\delta_1 - \delta_2) + \frac{1}{2}h^2 \sin 2\delta_1,$$

$$h \sin \delta_2 = -\sigma \sin 2(\delta_1 - \delta_2).$$
(15)

В отсутствие вращения ($\beta = 0$) с ростом приложенного поля в ферронематике последовательно возникают, сменяя друг друга пороговым образом, три ориентационные фазы: гомеотропная, угловая и планарная [10]. Каждая фаза отвечает своему типу взаимной ориентации директора и намагниченности. Углы отклонения директора и намагниченности от направления магнитного поля в этих ориентационных фазах как функции напряженности поля показаны на рис. 2 сплошными линиями. В слабых магнитных полях единичный вектор намагниченности ориентирован параллельно полю (**m** || **H**) и ортогонален директору (**n** \perp **m**). Такая взаимно ортогональная ориентация директора и намагниченности соответствует гомеотропной фазе ферронематика, в которой $\theta = \delta_1 = \pi/2, \, \delta_2 = 0.$ Эта фаза устойчива в полях $h \le h_{\perp}$ [10], где $h_{\perp} = -\sigma + \sqrt{\sigma^2 + 2\sigma}$.

С ростом напряженности поля гомеотропная фаза сменяется при $h = h_{\perp}$ угловой фазой, в которой угол θ между директором и намагниченностью отличен от нуля и $\pi/2$ и уменьшается с ростом поля. Угловая фаза термодинамически устойчива при $h_{\perp} \leq h \leq h_{\parallel}$ [10], где $h_{\parallel} = \sigma + \sqrt{\sigma^2 + 2\sigma}$.

Поскольку в статическом случае ($\beta = 0$) задача симметрична по отношению к повороту плоскости, образуемой директором и намагниченностью, на произвольный угол вокруг вектора напряженности поля, в каждой такой плоскости возможны два симметричных решения (сплошные линии на рис. 2) для углов отклонения директора и намагниченности от направления поля. Два состояния ферронематика, описываемые этими решениями, энергетически эквивалентны. Рост напряженности поля приводит к переходу системы в планарную фазу при $h \geq h_{\parallel}$. В ней директор и намагниченность ориентированы вдоль поля (**n** || **m** || **H**). Переходы между всеми ориентационными фазами происходят пороговым образом при $h = h_{\perp}$ и $h = h_{\parallel}$ по типу фазовых переходов второго рода [10].

В случае вращающегося магнитного поля ($\beta \neq$ $\neq 0$) система уравнений (15) имеет решения, соответствующие только угловой ориентационной фазе (рис. 2, штриховые линии). Вращение поля по часовой стрелке ($\beta > 0$) снимает вырождение ориентационных состояний в угловой фазе (рис. 2), характерные для статического магнитного поля ($\beta = 0$), приводя к отсутствию инвариантности уравнений (15) по отношению к одновременному отражению директора и намагниченности относительно направления поля. С увеличением скорости вращения В магнитного поля пороговые переходы размываются все интенсивнее. Кроме того, стационарные состояния ориентационной структуры ферронематика оказываются возможными не при любых значениях скорости вращения и напряженности магнитного поля: в заштрихованных областях на рис. 2 и 3 система уравнений (15) не имеет решений. При этих параметрах углы отклонения директора и намагниченности сложным образом зависят от времени, и их поведение описывается нестационарной системой уравнений (14). Отметим также, что решения системы (15) при $\beta < 0$, соответствующие вращению поля против часовой стрелки, зеркально-симметричны решениям, изображенным на рис. 2, относительно $\pi/2$ и 0 соответственно для углов δ_1 и δ_2 .

3.2. Устойчивость стационарных решений

Исследуем устойчивость стационарных решений системы уравнений (15), изображенных на рис. 2. Для этого определим эффективную плотность свободной энергии Φ [26], минимизацией которой по углам δ_1 и δ_2 можно получить уравнения (15), описывающие ориентационную структуру ферронематика в стационарном случае. С учетом выражения (5) и соотношений (7) и (14) в безразмерном виде она может быть представлена следующим образом:

$$\Phi = -h\cos\delta_2 - \frac{1}{2}h^2\cos^2\delta_1 + \sigma\cos^2(\delta_1 - \delta_2) - \beta\delta_1.$$
 (16)

Устойчивые решения, отвечающие минимуму эффективной свободной энергии (16), для углов ориентации директора и намагниченности показаны на рис. 3 сплошными линиями, неустойчивые решения — штриховыми линиями.

В слабом магнитном поле в отсутствие вращения ($\beta = 0$) устойчива гомеотропная ферронемати-

Рис.2. Углы ориентации директора (*a*) и вектора намагниченности (*б*) как функции напряженности магнитного поля *h* для энергии сцепления $\sigma = 1$ и различных значений угловой скорости вращения $\beta > 0$

Рис.3. Углы ориентации директора (a) и намагниченности (δ) как функции напряженности магнитного поля h для энергии сцепления $\sigma = 1$ и угловой скорости вращения $\beta = 0.1$ (сплошными линиями показаны устойчивые решения)

ческая фаза с взаимно ортогональной ориентацией директора и намагниченности ($\mathbf{n} \perp \mathbf{m}$), в которой вектор намагниченности параллелен магнитному полю ($\mathbf{m} \parallel \mathbf{H}$). Вращение поля ($\beta \neq 0$) приводит к исчезновению решений, описывающих стационарное состояние ферронематика (рис. 3, заштрихованная область). Однако с ростом напряженности поля такие решения появляются. Они описывают директор и намагниченность, вращающиеся с постоянной угловой скоростью β вслед за вектором **H**, причем намагниченность отстает от **H** по фазе. Увеличение напряженности поля приводит к тому, что ориентации директора и намагниченности меняются скачком (вертикальные отрезки на рис. 3), так что намагниченность начинает опережать напряженность поля, по-прежнему вращаясь с постоянной угловой скоростью β .

В сильном магнитном поле $(h \gg 1)$ отклонения

директора δ_1 и намагниченности δ_2 от направления поля малы, поэтому в низшем порядке из системы (15) находим

$$\delta_1 = \frac{\beta}{h^2}, \quad \delta_2 = -\frac{2\sigma\beta}{h^3}.$$
 (17)

Как видно из соотношений (17), с ростом напряженности магнитного поля директор **n** и намагниченность **m** асимптотически стремятся к направлению поля **H**, что подтверждается численным решением стационарных уравнений (15) ферронематика (рис. 3, сплошные линии).

В слабых магнитных полях ($\beta \leq h \ll 1$) можно пренебречь квадратичным по полю слагаемым в первом уравнении системы (15), тогда для углов δ_1 и δ_2 , определяющих отклонения директора и намагниченности от направления вращающегося магнитного поля, находим

$$\sin 2\delta_1 = \frac{\beta}{\sigma h^2} \times \\ \times \left[2\beta^2 - h^2 \pm 2\sqrt{(h^2 - \beta^2)(\sigma^2 - \beta^2)} \right], \qquad (18)$$
$$\sin \delta_2 = \frac{\beta}{h}.$$

Из выражений (17), (18) видно, что при малых скоростях вращения магнитного поля стационарные состояния ориентационной структуры ферронематика существуют при $\beta \leq h \ll 1$ не при любых значениях энергии сцепления директора и намагниченности ($\sigma \geq \beta$). Это подтверждается численным решением системы (15): из рис. 2 и 3 видно, что имеется критическое значение скорости вращения поля, при превышении которого стационарные решения исчезают, т. е. ориентационная структура ферронематика ведет себя нестационарным образом и описывается системой уравнений (14).

3.3. Синхронный и асинхронный режимы вращения ферронематика

Анализ решений нестационарной системы уравнений (14) показывает, что возможны два режима вращения ориентационной структуры ферронематика во вращающемся магнитном поле: синхронный и асинхронный. В первом случае директор и намагниченность вращаются вслед за магнитным полем с одинаковой угловой скоростью, во втором по-прежнему следуют за магнитным полем, но с фазовыми задержками, зависящими от времени. Границу синхронного и асинхронного режимов вращения можно определить, анализируя фазовый портрет системы (14), который представлен на рис. 4 при

Рис.4. Фазовый портрет системы уравнений (14) при $\sigma=1,\ h=0.4$

различных значениях угловой скорости вращения
 β магнитного поля.

Видно, что с ростом скорости вращения β амплитуда $d\delta_1/d\tau$ уменьшается, и при некотором критическом значении β_c исчезают точки пересечения фазовой траектории с осью абсцисс. При $\beta = \beta_c$ ось абсцисс является касательной к точкам минимума фазовой траектории, что позволяет записать условия нахождения критической скорости. Одно из них отвечает равенству нулю производной $d\delta_1/d\tau$:

$$\sigma \sin 2(\delta_1 - \delta_2) - \frac{1}{2}h^2 \sin 2\delta_1 + \beta_c = 0.$$
(19)

Другое условие вытекает из того, что точки, в которых фазовая траектория касается оси абсцисс, являются точками минимума функции $d\delta_1/d\tau$:

$$\sigma \cos 2(\delta_1 - \delta_2) \left(1 + \frac{h \cos 2\delta_1}{\cos \delta_2} \right) - \frac{1}{2} h^2 \cos 2\delta_1 = 0. \quad (20)$$

Решение уравнений (19) и (20) совместно с уравнением связи (14) позволяет найти зависимость $\beta_c =$ $= \beta_c(h, \sigma)$, определяющую границу между синхронным и асинхронным режимами вращения ферронематика. В отсутствие сцепления магнитных частиц с нематической матрицей ($\sigma = 0$) из системы уравнений (14), (19) и (20) получим, что критическая угловая скорость пропорциональна квадрату напряженности поля:

$$\beta_c^{LC} = \frac{h^2}{2},\tag{21}$$

что совпадает с критической скоростью вращения магнитного поля для чистого ЖК без магнитных частиц [23].

Для слабого сцепления ($\sigma \ll 1$) частиц с матрицей из системы уравнений (14), (19) и (20) критическую угловую скорость удается получить аналитически в виде поправки к выражению (21):

$$\beta_c = \frac{h^2}{2} - \sigma. \tag{22}$$

Для произвольной энергии сцепления в случае слабых магнитных полей ($h \ll 1$), пренебрегая квадратичными по полю слагаемыми (т.е. квадрупольным механизмом воздействия на ферронематик) в уравнениях (19) и (20), для критической скорости получаем линейную зависимость от поля:

$$\beta_c = h. \tag{23}$$

Для произвольных значений напряженности магнитного поля в случае жесткого сцепления ($\sigma \to \infty$) критическая угловая скорость вращения находится аналитически из системы уравнений (14), (19) и (20):

$$\beta_c^{\infty} = \frac{1}{16} \left(\sqrt{1+8h^2} - 1 \right)^{1/2} \left(\sqrt{1+8h^2} + 3 \right)^{3/2}.$$
 (24)

В слабых магнитных полях $(h \ll 1)$ это выражение упрощается: $\beta_c^{\infty} = h + h^3/2 + \dots$ В противоположном случае сильных магнитных полей $(h \gg 1)$ из соотношения (24) имеем $\beta_c^{\infty} = h^2/2 + h/\sqrt{2}\dots$ Переходя к размерным переменным в соотношении (24) и устремив концентрацию магнитной примеси к нулю, в главном слагаемом полученной асимптотики получаем квадратичную зависимость критической частоты от напряженности магнитного поля, $\omega_c^{LC} \approx \approx \chi_a H^2/2\gamma_1$, как и должно быть в чистом нематике, помещенном во вращающееся магнитное поле [23].

В общем случае для ферронематика с гомеотропным сцеплением между магнитными частицами и ЖК-матрицей зависимость критической угловой скорости от поля и энергии сцепления $\beta_c = \beta_c(h, \sigma)$ значительно усложняется. На рис. 5 представлена критическая угловая скорость β_c как функция напряженности магнитного поля h для различных значений энергии сцепления σ , полученная численным решением системы уравнений (14), (19) и (20). Области под кривыми на рис. 5 отвечают синхронному режиму вращения ориентационной структуры ферронематика, над кривыми — асинхронному режиму вращения.

Рис. 5. Зависимость критической угловой скорости β_c от напряженности магнитного поля h для нематика ($\sigma = 0$) и ферронематика ($\sigma \neq 0$)

В слабых полях основным механизмом влияния магнитного поля на ферронематик является дипольный механизм, т.е. воздействие поля на магнитные частицы. Из рис. 5 видно, что при $h \ll 1$ критическая скорость вращения β_c суспензии больше (рис. 5, $\sigma \neq 0$), чем в чистом ЖК, β_c^{LC} (рис. 5, штриховая кривая $\sigma = 0$). Это подтверждается аналитически формулой (23), которая дает линейную зависимость критической скорости вращения ферронематика от магнитного поля, в то время как в чистом нематике [23] эта скорость квадратична по полю (21).

В сильных магнитных полях главным становится квадрупольный механизм влияния магнитного поля на ферронематик (воздействие поля на нематическую матрицу), который, напротив, приводит к уменьшению критической скорости вращения β_c при конечных энергиях сцепления. При $h \gg 1$ критическая скорость вращения β_c суспензии (рис. 5, сплошные кривые) меньше, чем в чистом ЖК, β_c^{LC} (рис. 5, штриховая кривая $\sigma = 0$). Для случая слабого сцепления между магнитными частицами и ЖК-матрицей такая зависимость подтверждается аналитическим выражением (22). Переходная область на карте режимов (рис. 5) связана с конкуренцией между дипольными и квадрупольным механизмами влияния магнитного поля на ферронематик в области конечных полей и, как следствие, с изменением типа сцепления между магнитными частицами и ЖК-матрицей от гомеотропного к планарному.

Рис. 6. Фазовая диаграмма режимов вращения ферронематика для энергии сцепления $\sigma = 1$. Сплошной линией показана граница между синхронными и асинхронными режимами вращения; штриховая линия отделяет различные виды синхронных (S1 и S2) и асинхронных (A1 и A2) режимов вращения ферронематика

Анализ системы уравнений (14) показывает, что она допускает более сложные фазовые траектории, чем изображенные на рис. 4. Оказывается, что с увеличением напряженности поля появляется дополнительный минимум (в расчете на один период), который при некотором значении поля опускается ниже горизонтальной оси. Появляющиеся при этом новые решения системы уравнений (14), (19) и (20) для $\sigma = 1$ представлены на рис. 6. Сплошной линией показана граница между синхронными (S1 и S2) и асинхронными (A1 и A2) режимами вращения, а штриховой линией — границы между различными типами этих режимов.

Точки пересечения линий, определяющих границы режимов, с горизонтальной осью на фазовой диаграмме (рис. 6) могут быть найдены аналитически. Полагая $\beta_c = \delta_2 = 0$, из системы уравнений (19) и (20) совместно с уравнением связи (14) получаем уравнение

$$h^2 - 2\sigma(1\pm h) = 0,$$

откуда для положительных значений напряженности поля находим выражения

$$h_{\perp} = \sigma \left(-1 + \sqrt{1 + 2/\sigma} \right), \quad h_{\parallel} = \sigma \left(1 + \sqrt{1 + 2/\sigma} \right),$$

13 ЖЭТФ, вып. 3 (9)

совпадающие с пороговыми полями перехода ферронематика из гомеотропной ориентационной фазы в угловую (h_{\perp}) и из угловой фазы в планарную (h_{\parallel}) [10].

Результаты численного решения системы нестационарных уравнений (14), описывающих различные типы синхронных S1 и S2 (рис. 6) и асинхронных А1 и А2 (рис. 6) режимов, представлены на рис. 7. В слабых магнитных полях при вращении поля с угловой скоростью $\beta \leq \beta_c$ директор и намагниченность вращаются вслед за ним с одинаковой угловой скоростью, но с разной, не зависящей от времени, фазовой задержкой (рис. 7*a*), что соответствует синхронному режиму (область S1 на фазовой диаграмме рис. 6). При $\beta > \beta_c$ синхронный режим вращения становится неустойчивым и сменяется асинхронным (область А1 на фазовой диаграмме рис. 6). В этом случае директор и намагниченность по-прежнему следуют за магнитным полем, но с периодически меняющейся фазовой задержкой (рис. 7б).

Увеличение напряженности поля приводит к изменению видов синхронного и асинхронного режимов вращения ферронематика (области S2 и A2 на рис. 6). В синхронном режиме, соответствующем области S2 на фазовой диаграмме рис. 6, директор и намагниченность, как и прежде, вращаются с одинаковой угловой скоростью β вместе с магнитным полем, но теперь намагниченность опережает магнитное поле (рис. 7*e*). В асинхронном режиме (область A2 на фазовой диаграмме рис. 6) намагниченность совершает периодические колебания около вектора напряженности магнитного поля (рис. 7*e*).

3.4. Влияние скорости вращения магнитного поля на ориентационные состояния

Увеличение скорости вращения поля β при фиксированных значениях энергии сцепления и напряженности поля в синхронном режиме S1 приводит к увеличению значений углов δ_1 и δ_2 , характеризующих отставания директора и намагниченности от напряженности поля. В синхронном режиме S2 намагниченность опережает магнитное поле на больший угол. Для обоих синхронных режимов с ростом β растет угол θ между директором и намагниченностью и увеличивается характерное время установления синхронных режимов.

В обоих асинхронных режимах (рис. 8) с увеличением угловой скорости вращения β периоды вращения директора и намагниченности уменьшаются. В асинхронном режиме А1 (рис. $8a, \delta$) зависимости

Рис.7. Углы отклонения директора δ₁ (сплошные кривые) и намагниченности δ₂ (штриховые) от вектора напряженности магнитного поля: *a* — синхронный S1; *б* — асинхронный A1; *в* — синхронный S2; *г* — асинхронный A2 режимы вращения ферронематика

Рис. 8. Углы поворота директора δ_1 и намагниченности δ_2 при различных значениях угловой скорости вращения β в асинхронных режимах вращения ферронематика: a, δ — режим A1; ϵ — режим A2

Рис.9. Углы поворота директора δ_1 и намагниченности δ_2 при различных значениях энергии сцепления σ в асинхронных режимах вращения ферронематика: a, δ — режим A1; b — режим A2

углов δ_1 и δ_2 от времени становятся близкими к линейным. В асинхронном режиме A2 (рис. 86) уменьшается период колебаний намагниченности около напряженности поля, но амплитуда колебаний при этом не изменяется.

3.5. Влияние энергии сцепления на ориентационные состояния ферронематика

В синхронном режиме S1 при увеличении энергии сцепления σ угол поворота директора δ_1 уменьшается, а угол отклонения намагниченности δ_2 увеличивается. В синхронном режиме вращения S2 с ростом σ увеличивается отставание директора от напряженности магнитного поля, при этом угол θ между директором и намагниченностью увеличивается. Дальнейшее увеличение энергии сцепления σ приводит к тому, что режим S2 переходит в режим S1.

В асинхронном режиме вращения A1 период вращения директора в ферронематике (штриховые линии на рис. $9a, \delta$) превышает период вращения директора в чистом нематике (сплошные линии на рис. 9a), т.е. при одной и той же скорости вращения β магнитного поля директор в ферронематике вращается медленнее директора нематика. С увеличением энергии сцепления σ период вращения директора и намагниченности в ферронематике уменьшается, всегда оставаясь больше, чем в нематике без магнитной примеси.

В асинхронном режиме вращения A2 единичный вектор намагниченности **m** совершает периодические колебания около напряженности **H**, увеличение σ приводит к уменьшению периода и росту амплитуды этих колебаний (рис. 9*в*).

4. ЗАКЛЮЧЕНИЕ

В работе теоретически исследована ориентационная структура ферронематика с мягким гомеотропным сцеплением между директором и намагниченностью в однородном вращающемся магнитном поле с круговой поляризацией. Получена нестационарная система уравнений, описывающая динамику ориентационной структуры ферронематика, которая решена численно и в предельных случаях аналитически. Найдены ее стационарные и нестационарные решения.

Показано, что во вращающемся магнитном поле система уравнений, описывающая динамику ферронематика, имеет решения, соответствующие угловой ориентационной фазе ферронематика. Существовавшие в статическом случае пороговые переходы между фазами с гомеотропным, угловым и планарным типами сцепления магнитных частиц с матрицей «размываются». Обнаружены различные синхронные и асинхронные режимы вращения, характеризующие динамику ориентационной структуры. В синхронных режимах директор и намагниченность вращаются с частотой магнитного поля и постоянной фазовой задержкой. В асинхронных режимах намагниченность совершает периодические колебания около направления магнитного поля. Показано, что смена режимов вращения от синхронного к асинхронному может быть вызвана как изменением скорости вращения магнитного поля, так и изменением его напряженности. Найдена зависимость критической угловой скорости вращения поля, определяющей границу существования синхронного и асинхронного режимов вращения, от напряженности. Построена фазовая диаграмма синхронных и асинхронных режимов. Проведены численные расчеты углов поворота директора и вектора намагниченности для различных значений напряженности приложенного магнитного поля, энергии сцепления магнитных частиц с ЖК-матрицей и скорости вращения магнитного поля.

Полученные в работе результаты относятся к неограниченному образцу ферронематического ЖК. В реальных экспериментах поведение ориентационной структуры ЖК изучается в ограниченных геометриях. Наиболее близкой по постановке к рассмотренной нами задаче является краевая задача в геометрии кручения (7). Фактически в известных из физики ЖК [27,28] или из физики магнитных жидкостей [24, 25] экспериментах рассматривается система, помещенная в цилиндрическую полость. Магнитное поле вращается в плоскости, перпендикулярной оси цилиндра, что отвечает кручению директора. Метод вращающегося поля [28], используемый для определения коэффициента вращательной вязкости γ_1 ЖК в цилиндрической области, основан на приближении однородного распределения директора внутри образца. В этом случае система имеет достаточно большие размеры, чтобы можно было пренебречь краевыми эффектами.

Конечные размеры полости оказывают влияние на ориентационную динамику из-за сил поверхностного сцепления директора с границами [29, 30]. При жестком сцеплении ЖК с поверхностью силы ориентационной упругости не позволяют магнитному полю полностью ориентировать ЖК в пристеночной области, размер которой порядка магнитной длины когерентности $\xi \propto 1/H$. По мере уменьшения сцепления ЖК с границами полости размер этой области будет только уменьшаться.

При вращении магнитного поля сцепление ЖК с поверхностью может привести к пристеночным эффектам, таким как обратное течение и инверсионные стенки [27, 28]. Толщина пристеночной области неоднородности ориентационной структуры ЖК становится на порядок больше магнитной длины когерентности ξ [30], т. е. наличие дефектов и искажений структуры ЖК у стенок уменьшает размер однородной вращающейся области ЖК, которую можно расширить, увеличивая напряженность магнитного поля или размер ячейки ЖК. Диаметр цилиндрических трубок (около 10 мм) с образцами ЖК, используемых в экспериментах с вращающимся магнитным полем [30], значительно превосходит толщину пристеночной области ξ^* . Оценка для типичных нематиков в полях $B\,\approx\,0.1$ Тл дает величину

 $\xi^* \approx 0.1$ мм. Таким образом, используемое нами приближение однородности ориентации директора справедливо вдали от стенок образца на расстояниях, много больших ξ^* .

При скоростях вращения, меньших ω_c , экспериментальные результаты находятся в хорошем согласии с предсказаниями теории [29], однако если скорость вращения превосходит ω_c , то могут существовать решения с неоднородным распределением директора.

В решенной нами задаче рассматриваются ориентационные эффекты, обусловленные конечной энергией сцепления между магнитной и ЖК-подсистемами ферронематика. Эти эффекты сохраняются и в краевых задачах для ферронематиков как статических [12, 16], так и динамических [21].

Работа выполнена при частичной поддержке РФФИ (грант № 13-02-96001).

ЛИТЕРАТУРА

- Y. A. Garbovskiy and A. V. Glushchenko, Sol. St. Phys. 62, 1 (2010).
- F. Brochard and P. G. de Gennes, J. de Phys. 31, 691 (1970).
- E. Ouskova, O. Buluy, C. Blanc et al., Mol. Cryst. Liq. Cryst. 525, 104 (2010).
- Z. Mitróová, N. Tomašovičová, M. Timko et al., New J. Chem. 35, 1260 (2011).
- O. Buluy, S. Nepijko, V. Reshetnyak et al., Soft Matter 7, 644 (2011).
- N. Podoliak, O. Buchnev, D. V. Bavykin et al., J. Colloid and Interface Sci. 386, 158 (2012).
- N. Tomašovičová, M. Timko, Z. Mitróová et al., Phys. Rev. E 87, 014501 (2013).
- S. V. Burylov and Y. L. Raikher, Mol. Cryst. Liq. Cryst. 258, 107 (1995).
- S. V. Burylov and Y. L. Raikher, Mol. Cryst. Liq. Cryst. 258, 123 (1995).
- 10. A. N. Zakhlevnykh, J. Magn. Magn. Mater. 269, 238 (2004).
- V. I. Zadorozhnii, T. J. Sluckin, V. Yu. Reshetnyak et al., SIAM J. Appl. Math. 68, 1688 (2008).
- 12. D. V. Makarov and A. N. Zakhlevnykh, Phys. Rev. E 81, 051710 (2010).

- 13. A. N. Zakhlevnykh and O. R. Semenova, Mol. Cryst. Liq. Cryst. 540, 219 (2011).
- N. Podoliak, O. Buchnev, O. Buluy et al., Soft Matter 7, 4742 (2011).
- **15**. А. Н. Захлевных, О. Р. Семенова, ЖТФ **82**(2), 1 (2012).
- D. V. Makarov and A. N. Zakhlevnykh, Soft Matter 8, 6493 (2012).
- 17. J. C. Bacri and A. M. Figueiredo Neto, Phys. Rev. E 50, 3860 (1994).
- Y. L. Raikher and V. I. Stepanov, J. Intel. Mater. Syst. Struct. 7, 550 (1996).
- 19. A. N. Zakhlevnykh and D. V. Makarov, Mol. Cryst. Liq. Cryst. 475, 233 (2007).
- 20. D. V. Makarov and A. N. Zakhlevnykh, J. Magn. Magn. Mater. 320, 1312 (2008).
- 21. A. N. Zakhlevnykh and D. V. Makarov, Mol. Cryst. Liq. Cryst. 540, 135 (2011).

- 22. Yu. Garbovskiy, J. R. Baptist, J. Thompson et al., Appl. Phys. Lett. 101, 181109 (2012).
- 23. I. W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals, Taylor & Francis, London-New York (2004).
- 24. М. И. Шлиомис, УФН 112, 427 (1974).
- **25**. В. М. Зайцев, М. И. Шлиомис, ПМТФ **10**(5), 11 (1969).
- 26. G. Derfel, Mol. Cryst. Liq. Cryst. 92, 41 (1983).
- 27. S. V. Pasechnik, V. G. Chigrinov, and D. V. Shmeliova, *Liquid Crystals*, Wiley-VCH, Weinheim (2009).
- **28**. В. В. Беляев, Вязкость нематических жидких кристаллов, Физматлит, Москва (2002).
- 29. F. M. Leslie, G. R. Luckhurst, and H. J. Smith, Chem. Phys. Lett. 13, 368 (1972).
- 30. H. Kneppe and F. Schneider, J. Phys. E 16, 512 (1983).