ИОНИЗАЦИОННОЕ ВОЗБУЖДЕНИЕ ГЕЛИЕПОДОБНЫХ ИОНОВ ПРИ КОМПТОНОВСКОМ РАССЕЯНИИ

А. И. Михайлов, А. В. Нефёдов*

Петербургский институт ядерной физики им. Б. П. Константинова, Национальный исследовательский центр «Курчатовский институт» 188300, Гатчина, Ленинградская обл., Россия

Поступила в редакцию 8 апреля 2018 г.

Рассмотрена ионизация гелиеподобных ионов с одновременным возбуждением *ns*-состояний в результате рассеяния фотонов. Дифференциальные и полные сечения процесса вычислены в лидирующем порядке теории возмущений по межэлектронному взаимодействию. Полученные формулы применимы в нерелятивистской области энергий вдали от порога ионизации.

DOI: 10.1134/S0044451018100048

1. ВВЕДЕНИЕ

Рассеяние фотонов на атоме, сопровождаемое переходом связанного электрона в сплошной спектр, принято называть комптоновским рассеянием. Простейшую мишень представляет собой одноэлектронный атом, характеризуемый потенциалом ионизации $I = m(\alpha Z)^2/2$ и средним импульсом связанного электрона $\eta = m\alpha Z$, где α — постоянная тонкой структуры, m — масса электрона ($\hbar = 1, c = 1$). Атомное ядро с зарядовым числом Z считается источником внешнего поля (картина Фарри). В нерелятивистском пределе кулоновский параметр $\alpha Z \ll 1$. Сечение комптоновского рассеяния фотонов с энергией ω_1 в области $I \ll \omega_1 \ll m$ было получено Шнайдтом [1] и может быть записано в виде

$$\sigma_{1s}^{+} = \frac{8\sigma_T}{\nu_1^2} \int_{0}^{\varepsilon_1 - 1} \frac{d\varepsilon}{1 - e^{-2\pi\xi}} \int_{x_{min}}^{x_{max}} dx (1 + \tau^2(x)) F(x), \quad (1)$$

где

$$F(x) = \frac{x(3x+\Delta)e^{-\gamma(x)}}{[(x-\Delta)^2+4x]^3},$$

$$\tau(x) = \frac{1}{2} \left(\frac{\nu_2'}{\nu_1} + \frac{\nu_1}{\nu_2'} - \frac{x}{\nu_1\nu_2'}\right),$$

$$\gamma(x) = 2\xi \operatorname{arcctg}\left(\frac{x+1-\varepsilon}{2\sqrt{\varepsilon}}\right).$$

Здесь $\sigma_T = 8\pi r_e^2/3 = 6.65 \cdot 10^{-25} \text{ см}^2$ — томсоновское сечение рассеяния на свободном электроне, $r_e = \alpha/m$ — классический радиус электрона, $\omega'_2 = \omega_1 - E - I$ — энергия рассеянного фотона, $\varepsilon_1 = \omega_1/I$ и $\varepsilon = E/I$ — энергия соответственно налетающего фотона и ионизованного электрона, калиброванные в единицах I, $\Delta = (\omega_1 - \omega'_2)/I = \varepsilon + 1$ — безразмерная потеря энергии неупруго рассеянного фотона, $x_{min} = (\nu_1 - \nu'_2)^2$, $x_{max} = (\nu_1 + \nu'_2)^2$, $\nu_1 = \omega_1/\eta = \alpha Z \varepsilon_1/2$, $\xi = 1/\sqrt{\varepsilon}$, $\nu'_2 = \omega'_2/\eta = \nu_1 - \alpha Z \Delta/2$. Область главного значения агсстд z лежит в интервале от 0 до π .

В силу условия $\omega_1 \gg I$ рассеяние фотонов описывается в \mathbf{A}^2 -приближении [2–4], где \mathbf{A} — векторпотенциал поля фотона. В этом приближении формула (1) получается из амплитуды, которая соответствует контактной (или sea-gull) диаграмме Фейнмана, причем электроны (как связанный, так и выбитый в сплошной спектр) описываются кулоновскими волновыми функциями. В околопороговой области энергий $\omega_1 \gtrsim I$ необходимо также учитывать вклад полюсных членов [5], однако в этом случае само комптоновское сечение достаточно мало по сравнению с сечением фотопоглощения. Сечения ионизации для фото- и комптон-эффекта становятся сравнимыми по величине при энергии фотонов ω_c \simeq \simeq (5/7)
 $\eta Z^{2/5}.$ В частности, для Z = 2 имее
м ω_c \simeq $\simeq \eta \simeq 7$ кэВ. Если $\omega_1 \gg \eta$, ионизация происходит главным образом благодаря комптоновскому рассеянию.

Зависимости σ_{1s}^+ от энергии ω_1 падающих фотонов для разных одноэлектронных атомов пред-

E-mail: anef@thd.pnpi.spb.ru

Рис. 1. Сечения комптоновского рассеяния на связанном K-электроне, вычисленные по формуле (1) (сплошные кривые). Числа указывают зарядовое число Z. Пунктирная кривая соответствует рассеянию на свободном электроне

ставлены на рис. 1. Там же для сравнения показано сечение комптон-эффекта на свободном электроне, вычисленное по формуле Клейна – Нишины – Тамма [6]. При $\omega_1 \ll \eta$ сечение комптоновского рассеяния на связанном электроне мало, поскольку процесс происходит в области, кинематически недоступной для рассеяния на свободном электроне. Потери энергии фотона в свободной кинематике, определяемые законами сохранения энергии и импульса, однозначно связаны с углом рассеяния ϑ посредством соотношения (в единицах I) [6]

$$\delta = 2(1 - \cos\vartheta)\omega_1^2/\eta^2. \tag{2}$$

Даже максимальные значения этих потерь $\delta_{max} \simeq 4\omega_1^2/\eta^2 \ll 1$, которые достигаются при рассеянии назад ($\vartheta \simeq \pi$), слишком малы по сравнению с потерями энергии $\Delta = \varepsilon + 1 \ge 1$ фотона при комптоновском рассеянии на атоме (см. формулу (1)). При учете взаимодействия электрона с ядром имеет место только закон сохранения энергии. Атомное ядро участвует в процессе, принимая на себя в силу огромной массы любой импульс отдачи.

При $\omega_1 \sim \eta$ ионизация связанного электрона происходит наиболее эффективно. В этом случае потери энергии фотона, рассеянного на атоме, близки к потерям энергии $\delta \sim 2(1 - \cos \vartheta)$ в свободной кинематике в широкой области углов рассеяния, кроме рассеяния на малые углы $\vartheta \sim 0$.

При $\eta \ll \omega_1 \ll m$ фотон преимущественно теряет энергию $\Delta \sim 2\omega_1^2/\eta^2 \gg 1$ [4]. Соответственно,

поскольку энергия ионизованного электрона $\varepsilon \simeq \Delta$, кулоновский параметр $\xi = 1/\sqrt{\varepsilon} \sim \eta/\sqrt{2}\omega_1 \ll 1$ и волновая функция электрона может быть аппроксимирована плоской волной (борновское приближение). Это дает для сечения вместо уравнения (1) величину $\sigma_{1s}^+ = \sigma_T (1 - 2\omega_1/m)$, не зависящую от Z.

Релятивистские выражения для дифференциальных сечений комптоновского рассеяния на *К*-электроне изучались в ряде работ (см., например, работы [7–10]). Формула (1) остается справедливой в релятивистской области энергий $\omega_1 \sim m$, если ионизованный электрон нерелятивистский [11]. Отметим также, что сечение для двухэлектронного атома (гелиеподобного иона) в лидирующем порядке теории возмущений по межэлектронному взаимодействию есть $\sigma^+ = 2\sigma_{1s}^+$, с учетом числа электронов в атоме.

При изучении проблемы рассеяния на атомных мишенях с несколькими электронами выделяют такие процессы, которые целиком обусловлены межэлектронным взаимодействием. Сечения оказываются крайне чувствительными к корректному описанию электрон-электронных корреляций. Теоретические предсказания, выполненные в рамках разных методов, иногда расходятся друг с другом даже по порядку величины.

В настоящей работе мы рассмотрим ионизацию двухэлектронной атомной мишени с одновременным возбуждением остаточного иона (ионизационное возбуждение) в *ns*-состояние ($n \ge 2$) при рассеянии фотонов с энергией в области $I \ll \omega_1 \ll m$. Налетающий фотон взаимодействует только с одним электроном, поэтому одновременный переход двух связанных электронов возможен лишь при учете межэлектронного взаимодействия. Это взаимодействие мы опишем в первом порядке нерелятивистской теории возмущений по параметру $1/Z \ll 1$, используя в качестве нулевого приближения кулоновские волновые функции и кулоновскую функцию Грина. Фейнмановские диаграммы для рассматриваемого процесса в **А²-приближении** показаны на рис. 2, где график а учитывает межэлектронное взаимодействие в начальном состоянии атома, а график б — в конечном состоянии. К диаграммам рис. 2 надо добавить еще две обменные диаграммы, которые получаются из а и б перестановкой конечных состояний.

Процесс ионизационного возбуждения при комптоновском рассеянии исследовался ранее в работах [12–14] в асимптотической нерелятивистской области энергий $\eta \ll \omega_1 \ll m$. В этой области энергий задача допускает существенные упрощения. Глав-

Рис. 2. Контактные фейнмановские диаграммы для ионизационного возбуждения атома при рассеянии фотона. Волнистые линии изображают налетающий и рассеянный фотоны с импульсами соответственно \mathbf{k}_1 и \mathbf{k}_2 . Штриховая линия изображает межэлектронное кулоновское взаимодействие. Электронный пропагатор с точкой соответствует кулоновской функции Грина

ный вклад в сечение процесса происходит только от диаграммы рис. 2a, причем для описания волновой функции вылетающего электрона можно использовать борновское приближение. Экспериментальный интерес представляет отношение сечения ионизационного возбуждения σ_{nl}^{+*} в nl-состояние к сечению простой ионизации:

$$R_{nl} = \frac{\sigma_{nl}^{+*}}{\sigma^+} = \frac{Q_{nl}}{Z^2}.$$
(3)

Здесь безразмерная функция Q_{nl} не зависит от ω_1 и Z, а $\sigma^+ = 2\sigma_T(1 - 2\omega_1/m)$. В частности, для состояний с n = 2 были вычислены $Q_{2s} = 0.0592$ и $Q_{2p} = 0.0043$ [13, 14]. Универсальный скейлинг (3) получается в рамках нерелятивистской теории возмущений в лидирующем порядке по параметру 1/Zтолько в области энергий $\eta \ll \omega_1 \ll m$. Как мы увидим в дальнейшем, при расширении области энергий до $I \ll \omega_1 \ll m$, которая включает в себя $\omega_1 \sim \eta$, универсальность нарушается и функции Q_{nl} становятся явно зависящими от Z и ω_1 , при этом $\sigma^+ = 2\sigma_{1s}^+$, где σ_{1s}^+ дается формулой Шнайдта (1).

В литературе имеются только две работы [15,16] одной группы авторов, где было вычислено сечение ионизационного возбуждения атома гелия в области энергий $\omega_1 \sim \eta$. Однако приближения, использованные в расчетах [15, 16], на наш взгляд, необоснованны. Во-первых, применялось так называемое «импульсное приближение», в котором сечение представляется в виде произведения сечения Клейна – Нишины – Тамма и атомного формфактора. Во-вторых, не учитывалось межэлектронное взаимодействие в конечном состоянии атома, которое в области энергий $\omega_1 \sim \eta$ дает вклад того же порядка, что и взаимодействие в начальном состоянии.

Нерелятивистская теория возмущений использовалась нами в работе [17] для описания ионизацион-

(4)

где **q** — импульс, переданный налетающим электроном. Интересно, что радиальная зависимость оператора электрон-фотонного взаимодействия $U_{\gamma}(\mathbf{r})$ в **A**²-приближении имеет такой же вид; меняется только предэкспоненциальный множитель:

ного возбуждения гелиеподобных мишеней при рассеянии быстрых электронов (с энергией, много большей энергии связи *I*). Поскольку в этом случае основной вклад в сечение ионизации дают малые потери энергии (порядка *I*), взаимодействие быстрой

частицы с атомом можно описать оператором [17]

 $U(\mathbf{r}) = \frac{4\pi\alpha}{a^2} e^{i\mathbf{q}\cdot\mathbf{r}},$

$$U_{\gamma}(\mathbf{r}) = N_{\gamma} e^{i\mathbf{q}\cdot\mathbf{r}}, \quad N_{\gamma} = 2\pi \frac{\alpha}{m} \frac{\mathbf{e}_{2}^{*} \cdot \mathbf{e}_{1}}{\sqrt{\omega_{1}\omega_{2}}}.$$
 (5)

Здесь $\mathbf{q} = \mathbf{k}_1 - \mathbf{k}_2$ — импульс, переданный атому налетающим фотоном, $\omega_1 = |\mathbf{k}_1|$ и \mathbf{e}_1 ($\omega_2 = |\mathbf{k}_2|$ и \mathbf{e}_2^*) — соответственно энергия и вектор поляризации налетающего (рассеянного) фотона. Используя аналогию между уравнениями (4) и (5), можно легко восстановить амплитуду изучаемого процесса из результатов работы [17].

2. АМПЛИТУДА ИОНИЗАЦИОННОГО ВОЗБУЖДЕНИЯ АТОМА ПРИ КОМПТОНОВСКОМ РАССЕЯНИИ

Обозначим через p и $E = p^2/2m$ асимптотический импульс и энергию ионизованного электрона, а через $\eta_n = \eta/n$ и $E_{ns} = -\eta_n^2/2m$ соответственно средний импульс и энергию возбужденного электрона ($n \ge 2$). Следуя [17], представим искомую амплитуду в виде суммы четырех матричных элементов, соответствующих вкладам от четырех диаграмм Фейнмана, первые две из которых приведены на рис. 2:

$$\mathcal{A} = \sqrt{2} \left(\mathcal{A}_a + \mathcal{A}_b + \mathcal{A}_c + \mathcal{A}_d \right). \tag{6}$$

Здесь

$$\mathcal{A}_a = \langle \psi_p \psi_{ns} | U_\gamma G(E_a) V | \psi_{1s} \psi_{1s} \rangle, \tag{7}$$

$$\mathcal{A}_{b} = \langle \psi_{p} \psi_{ns} | VG(E_{b}) U_{\gamma} | \psi_{1s} \psi_{1s} \rangle, \qquad (8)$$

$$\mathcal{A}_c = \langle \psi_{ns} \psi_p | U_\gamma G(E_c) V | \psi_{1s} \psi_{1s} \rangle, \qquad (9)$$

$$\mathcal{A}_d = \langle \psi_{ns} \psi_p | VG(E_b) U_\gamma | \psi_{1s} \psi_{1s} \rangle, \qquad (10)$$

где $G(E) = (E-H)^{-1}$ — кулоновская функция Грина для электрона с энергией E. Межэлектронное взаимодействие описывается двухчастичным оператором V, тогда как U_{γ} и G(E) — одночастичные операторы. Энергии электронов в промежуточных состояниях, описываемых функциями Грина, определяются законом сохранения энергии:

$$E_a = 2E_{1s} - E_{ns} = -I(2 - n^{-2}),$$

$$E_b = E + E_{ns} - E_{1s} = I(\varepsilon + 1 - n^{-2}),$$

$$E_c = 2E_{1s} - E = -I(\varepsilon + 2),$$

где $\varepsilon = E/I = p^2/\eta^2$ — безразмерная энергия ионизованного электрона.

Следует отметить, что амплитуды \mathcal{A}_a и \mathcal{A}_c учитывают взаимодействие между атомными электронами в начальном состоянии, а амплитуды \mathcal{A}_b и \mathcal{A}_d — в конечном. Техника расчета амплитуд детально изложена в работе [17]. Здесь мы приведем только их конечные выражения. Прямые амплитуды представляются в виде производных от однократных интегралов:

$$\mathcal{A}_{a} = \mathcal{N}\hat{\Gamma}_{\mu\lambda} \int_{0}^{1} \frac{dx}{\Lambda} e(x) \Phi(\Lambda, \lambda)_{\left| \substack{\lambda \to 0 \\ \mu = \eta + \eta_{n}} \right|}, \qquad (11)$$

$$\mathcal{A}_{b} = \mathcal{N}\hat{\Gamma}_{\mu\lambda} \int_{0}^{1} \frac{dx}{\Lambda_{1}} e_{1}(x) \Phi_{1}(\Lambda_{1},\mu) \big|_{\substack{\lambda=\eta\\\mu=\eta+\eta_{n}}}.$$
 (12)

Дифференциальный оператор $\hat{\Gamma}_{\mu\lambda}$ действует на параметры μ и λ , от которых зависят подынтегральные функции:

$$\begin{split} \hat{\Gamma}_{\mu\lambda} &= D_{\mu} \frac{\partial^{2}}{\partial \mu \partial \lambda} \frac{1}{\mu^{2}}, \\ D_{\mu} &= \sum_{l=0}^{n-1} \frac{(n-1)!(2\eta_{n})^{l}}{(n-l-1)!l!(l+1)!} \frac{\partial^{l}}{\partial \mu^{l}}, \\ \Lambda &= \sqrt{p_{a}^{2}(1-x) + (\mu+\eta)^{2}x}, \\ \Lambda_{1} &= \sqrt{(q^{2}x - p_{b}^{2})(1-x) + \lambda^{2}x - i0}, \\ e(x) &= x^{-\zeta} \left(\frac{\Lambda + p_{a}}{\mu + \eta + p_{a}}\right)^{2\zeta}, \\ e_{1}(x) &= x^{-i\beta} \left(\frac{(qx)^{2} + (\Lambda_{1} - ip_{b})^{2}}{q^{2} + (\lambda - ip_{b})^{2}}\right)^{i\beta}, \\ \Phi(\Lambda, \lambda) &= \frac{[(\mathbf{q} - \mathbf{p})^{2} + (\Lambda + \lambda)^{2}]^{i\xi-1}}{[q^{2} + (\Lambda + \lambda - ip)^{2}]^{i\xi}}, \\ \Phi_{1}(\Lambda_{1}, \mu) &= \frac{[(\mathbf{q}x - \mathbf{p})^{2} + (\Lambda_{1} + \mu - ip)^{2}]^{i\xi}}{[(qx)^{2} + (\Lambda_{1} + \mu - ip)^{2}]^{i\xi}}, \\ p_{a} &= \sqrt{2m|E_{a}|} = \frac{\eta}{\zeta}, \quad p_{b} &= \sqrt{2mE_{b}} = \frac{\eta}{\beta}, \\ \zeta &= \frac{1}{\sqrt{2 - n^{-2}}}, \quad \beta &= \frac{1}{\sqrt{\varepsilon + 1 - n^{-2}}}, \quad \xi &= \frac{\eta}{p} = \frac{\eta}{\sqrt{\varepsilon}} \end{split}$$

В уравнениях (11) и (12) после взятия производных следует устремить λ соответственно к 0 и η , а μ положить равной $\eta + \eta_n$.

Обменные амплитуды оказываются более сложными и выражаются через производные от двукратных интегралов:

$$\mathcal{A}_{c} = \frac{\mathcal{N}}{2} \hat{\Gamma}_{\mu\lambda\tau} \int_{0}^{1} \frac{dx}{\Lambda_{2}} e_{2}(x) \int_{0}^{1} \frac{dy}{L_{2}} W(L_{2})_{\big|_{\substack{\mu=\eta_{n}\\\lambda=\tau=\eta}}}, \quad (13)$$

$$\mathcal{A}_d = \frac{\mathcal{N}}{2} \hat{\Gamma}_{\mu\lambda\tau} \int_0^1 \frac{dx}{\Lambda_1} e_1(x) \int_0^1 \frac{dy}{L_1} W(L_1)_{\big|_{\substack{\mu=\eta_n\\\lambda=\tau=\eta}}}.$$
 (14)

Здесь

$$\begin{split} \hat{\Gamma}_{\mu\lambda\tau} &= D_{\mu} \frac{\partial^{3}}{\partial \mu \partial \lambda \partial \tau}, \\ \Lambda_{2} &= \sqrt{(p_{c}^{2} + q^{2}x)(1 - x) + \mu^{2}x}, \\ e_{2}(x) &= x^{-\gamma} \left(\frac{(qx)^{2} + (\Lambda_{2} + p_{c})^{2}}{q^{2} + (\mu + p_{c})^{2}}\right)^{\gamma}, \\ W(L) &= \frac{[(\mathbf{q}xy - \mathbf{p})^{2} + (L + \tau)^{2}]^{i\xi - 1}}{[(qxy)^{2} + (L + \tau - ip)^{2}]^{i\xi}}, \\ L_{1} &= \sqrt{(qx)^{2}y(1 - y) + (\Lambda_{1} + \mu)^{2}y}, \\ L_{2} &= \sqrt{(qx)^{2}y(1 - y) + (\Lambda_{2} + \lambda)^{2}y}, \\ p_{c} &= \sqrt{2m|E_{c}|} = \frac{\eta}{\gamma}, \quad \gamma = \frac{1}{\sqrt{\varepsilon + 2}}. \end{split}$$

В формулах (13) и (14) производные вычисляются в точках $\mu = \eta_n$, $\lambda = \eta$ и $\tau = \eta$. Амплитуды (11)–(14) содержат общий множитель

$$\mathcal{N} = (4\pi)^3 \alpha^2 N_p N_n N_1^2 \frac{\mathbf{e}_2^* \cdot \mathbf{e}_1}{\sqrt{4\omega_1 \omega_2}},\tag{15}$$

$$N_p^2 = \frac{2\pi\xi}{1 - e^{-2\pi\xi}}, \quad N_n^2 = \frac{\eta_n^3}{\pi}.$$
 (16)

3. ДИФФЕРЕНЦИАЛЬНЫЕ И ПОЛНОЕ СЕЧЕНИЯ

Дифференциальное сечение процесса, усредненное по поляризациям налетающих фотонов и просуммированное по поляризациям рассеянных фотонов, связано с амплитудой (6) соотношением

$$d\sigma_{ns}^{+*} = 2\pi \overline{|\mathcal{A}|^2} \delta(\omega_2 + E + E_0 - \omega_1) \frac{d\mathbf{k}_2}{(2\pi)^3} \frac{d\mathbf{p}}{(2\pi)^3}, \quad (17)$$

где

$$\overline{|\mathcal{A}|^2} = \frac{1}{2} \sum_{pol.} |\mathcal{A}|^2, \tag{18}$$

 $E_0 = E_{ns} - 2E_{1s} = I(2 - n^{-2})$ — пороговая энергия процесса. Учитывая, что амплитуда \mathcal{A} зависит

Рис. 3. Энергетические распределения вылетевших электронов для n = 2 и Z = 2 при различных значениях ε_1 , ε_{max} : вклад диаграммы рис. 2a (пунктирные кривые), суммарный вклад диаграмм рис. 2a и 2δ (штриховые), полный вклад всех диаграмм (сплошные)

от углов через $q,\, \mathbf{p}\cdot\mathbf{q}$
и $\mathbf{e}_2^*\cdot\mathbf{e}_1,$ представим фазовые объемы в виде

$$d\mathbf{k}_2 = 2\pi\omega_2^2 \, d\omega_2 \, dt_{12}, \quad d\mathbf{p} = 2\pi mp \, dE \, dt. \tag{19}$$

Здесь $t_{12} = \cos \theta_{12}$, $t = \cos \theta$, где θ_{12} — угол между \mathbf{k}_1 и \mathbf{k}_2 , θ — угол между \mathbf{p} и $\mathbf{q} = \mathbf{k}_1 - \mathbf{k}_2$. Убирая δ -функцию в (17) интегрированием по переменной ω_2 и заменяя dt_{12} на $qdq/\omega_1\omega_2$, получаем

$$d\sigma_{ns}^{+*} = \frac{mp}{(2\pi)^3} \overline{|\mathcal{A}|^2} \frac{\omega_2}{\omega_1} \, dE \, q \, dq \, dt, \tag{20}$$

где $\omega_2 = \omega_1 - E - E_0.$

Далее удобно выразить амплитуду (6) через безразмерную величину \mathcal{M} :

$$\mathcal{A} = \sqrt{2} \sum_{k} \mathcal{A}_{k} = \sqrt{2} \eta^{-7} \mathcal{N} \mathcal{M}, \qquad (21)$$

где множитель \mathcal{N} определяется формулой (15). Импульсы и энергии, входящие в \mathcal{M} , выражены соответственно в единицах $\eta = m\alpha Z$ и $I = m(\alpha Z)^2/2$, а закон сохранения энергии в этих единицах принимает вид $\varepsilon_1 - \varepsilon_2 = \varepsilon + \varepsilon_0$, где $\varepsilon_{1,2} = \omega_{1,2}/I$, $\varepsilon_0 = 2 - n^{-2}$. В результате при заданной энергии ω_1 налетающего фотона величина \mathcal{M} зависит от трех безразмерных переменных: $\varepsilon = E/I = \xi^{-2}$, $\varkappa = q/\eta$ и t.

Выполнив суммирование по поляризациям фотонов, получим

$$\frac{1}{2} \sum_{pol.} |\mathbf{e}_2^* \cdot \mathbf{e}_1|^2 = \frac{1}{2} (1 + t_{12}^2),$$
$$t_{12} = \frac{1}{2} \left(\frac{\omega_2}{\omega_1} + \frac{\omega_1}{\omega_2} - \frac{q^2}{\omega_1 \omega_2} \right) = \frac{1}{2} \left(\frac{\nu_2}{\nu_1} + \frac{\nu_1}{\nu_2} - \frac{\varkappa^2}{\nu_1 \nu_2} \right),$$

где $\nu_{1,2} = \omega_{1,2}/\eta = \alpha Z \varepsilon_{1,2}/2$. Функция t_{12} зависит от переменных ε и \varkappa . Тогда формула (18) имеет вид

$$\overline{|\mathcal{A}|^2} = \left(\frac{2\pi\alpha}{\eta}\right)^4 \frac{2^7 (1+t_{12}^2) |\mathcal{M}(\varepsilon,\varkappa,t)|^2}{n^3 \omega_1 \omega_2 p (1-e^{-2\pi\xi})}.$$
 (22)

Подставляя (22) в (20) и переходя к безразмерным величинам, получим трижды дифференциальное сечение:

$$\frac{d^3 \sigma_{ns}^{+*}}{d\varepsilon \, d\varkappa \, dt} = \frac{48 \sigma_T}{Z^2 n^3 \nu_1^2} \, \frac{\varkappa (1+t_{12}^2)}{1-e^{-2\pi\xi}} \left| \mathcal{M}(\varepsilon,\varkappa,t) \right|^2.$$
(23)

Ионизованный электрон может иметь энергию ε в пределах от 0 до $\varepsilon_{max} = \varepsilon_1 - \varepsilon_0$, а переданный импульс \varkappa ограничен значениями $\varkappa_{min} = \nu_1 - \nu_2$ и $\varkappa_{max} = \nu_1 + \nu_2$.

Выполнив интегрирование в (23) по переменным t и \varkappa , находим энергетические распределения ионизованных электронов $d\sigma_{ns}^{+*}/d\varepsilon$. Эти распределения показаны на рис. 3 для n = 2, Z = 2 и трех значений энергии $\varepsilon_1 = 50$ (a), 150 (б), 500 (в), которые соответствуют значениям $\nu_1 = 0.365, 1.095, 3.649$. Видно, что при $\omega_1 \lesssim \eta$ дифференциальные сечения определяются всеми четырьмя диаграммами Фейнмана, тогда как при $\omega_1\gtrsim 4\eta$ вклад диаграммы рис. 2aявляется определяющим за исключением очень малой части спектра вблизи $\varepsilon = 0$. Все кривые оказываются локализованными в достаточно узкой области относительно разрешенного законом сохранения энергии полного интервала $0 \leq \varepsilon \leq \varepsilon_{max}$. Из рис. 3 можно также получить информацию об энергетическом распределении рассеянных фотонов $d\sigma_{2s}^{+*}/d\varepsilon_2$, графики которого симметричны графикам $d\sigma_{2s}^{+*}/d\varepsilon$ относительно вертикальной прямой, проходящей через точку $\varepsilon = \varepsilon_{max}/2.$

Проинтегрировав (23) по областям изменения всех трех переменных, представим полное сечение в виде

$$\sigma_{ns}^{+*} = \frac{48\sigma_T}{Z^2 n^3 \nu_1^2} \int_{0}^{\varepsilon_{max}} \frac{d\varepsilon}{1 - e^{-2\pi\xi}} \int_{\varkappa_{min}}^{\varkappa_{max}} \varkappa (1 + t_{12}^2) \, d\varkappa \times \\ \times \int_{-1}^{+1} |\mathcal{M}(\varepsilon, \varkappa, t)|^2 dt. \quad (24)$$

Поскольку перестройка относительных вкладов фейнмановских диаграмм происходит при характерных значениях $\omega_1 \sim \eta$, воспользуемся безразмерной энергетической шкалой, калиброванной импульсом *η*. В таких единицах энергии фотонов в диапазоне $I \ll \omega_1 \ll m$ соответствуют области $\alpha Z/2 \ll \nu_1 \ll (\alpha Z)^{-1}$. Зависимости сечения (24) от энергии налетающего фотона построены на рис. 4 для Z = 2 и 10. Умноженное на Z^2 сечение слабо зависит от Z. Как и на рис. 3, здесь видно, что при $\nu_1 \lesssim 1$ следует учитывать все графики Фейнмана, тогда как в области $\nu_1 \gtrsim 4$ достаточно учитывать только график рис. 2*a*. Поведение σ_{2s}^{+*} качественно повторяет предсказания формулы Шнайдта (1): сечение подавлено при $\nu_1 \ll 1$, быстро растет в переходной области $\nu_1 \sim 1$ и убывает при высоких энергиях $\nu_1 \gg 1$.

На рис. 5 дано сравнение полученных нами полных сечений σ_{2s}^{+*} для атома гелия с аналогичными сечениями, вычисленными в работах [15,16] для перехода на всю *L*-оболочку в интервале энергий 6 кэВ $\leq \omega_1 \leq 60$ кэВ. Поскольку в области асимптотически высоких энергий ($\omega_1 \gg \eta$) сечение ионизации с переходом в 2*p*-состояние на порядок меньше сечения ионизации с переходом в 2*s*-состояние

Рис. 4. Полные сечения (24) для n = 2 и Z = 2 (a), 10 (b): вклад диаграммы рис. 2a (пунктирные кривые), суммарный вклад диаграмм рис. 2a и рис. 2b (штриховые), вклад всех диаграмм (сплошные)

(см. [12–14]), сечения из работ [15,16] следует уменьшить примерно на 10% при сравнении с нашими σ_{2s}^{+*} . Характерно то, что расчеты работы [15] практически не зависят от энергии фотона ω_1 , а работа [16] предсказывает даже рост сечения при высоких энергиях.

Экспериментальный интерес представляет отношение сечений ионизации с возбуждением и простой ионизации в комптоновском рассеянии, $R_{nl} = \sigma_{nl}^{+*}/\sigma^+$, на гелиеподобных ионах в широком диапазоне энергий фотона. В рамках нашего рассмотрения $\sigma^+ = 2\sigma_{1s}^+$, где σ_{1s}^+ описывается формулой Шнайдта (1). На рис. 6 показано поведение величи-

Рис. 5. Сравнение результатов нашего расчета (сплошная кривая) и других расчетов для гелия: △ [15], ⊽ [16]

ны $Z^2 R_{2s}$ в области $\alpha Z/2 \ll \nu_1 \ll (\alpha Z)^{-1}$ для Z=2и 10. В области малых $\nu_1 \ll 1$ отношение сечений мало и проявляет сильную зависимость от Z. В переходной области $\nu_1 \sim 1$ величина $Z^2 R_{2s}$ слабо зависит от Z и быстро возрастает, достигая уже практически при $\nu_1 \gtrsim 2$ максимального значения. Ранее этот универсальный для всех Z предел был получен при асимптотически высоких энергиях $\nu_1 \gg 1$ [13,14]. Хотя сечения как простой ионизации, так и ионизации с возбуждением вычислялись с использованием грубого борновского приближения для ионизованного электрона [13,14], соответствующее отношение сечений (3) имеет область применимости гораздо более широкую, чем можно было изначально предположить. Это происходит за счет интерференции вкладов от межэлектронного взаимодействия в конечном состоянии атома и обменного взаимодействия, а также быстрого уменьшения этих вкладов с ростом энергии фотона.

4. ЗАКЛЮЧЕНИЕ

В настоящей работе рассмотрен процесс комптоновского рассеяния на гелиеподобных ионах с одновременным возбуждением *ns*-состояния остаточного иона. Расчет дифференциальных и полных сечений выполнен для фотонов с энергией $I \ll \omega_1 \ll m$. В этой области энергий достаточно использовать \mathbf{A}^2 -приближение для электрон-фотонного взаимо-

Рис. 6. Отношения сечений $Z^2 R_{2s}$ для Z = 2 (a), 10 (b): вклад диаграммы рис. 2a (пунктирные кривые), вклад диаграмм рис. 2a и рис. 2b (штриховые), вклад всех диаграмм (сплошные)

действия и нерелятивистское приближение для волновых функций. Межэлектронное взаимодействие учтено в рамках теории возмущений по малому параметру 1/Z. Численные расчеты показали, что в области энергий $\omega_1 \lesssim \eta$ необходим учет электронэлектронного взаимодействия как в начальном, так и в конечном состояниях атома (диаграммы рис. 2a, рис. 26 и обменные диаграммы). В области энергий $\omega_1 \gtrsim \eta$ доминирует вклад диаграммы рис. 2a, описывающей межэлектронное взаимодействие в начальном состоянии. В этой же области энергий величина $Z^2 \sigma_{2s}^{+*}/\sigma^+$ является универсальной функцией от $\nu_1 = \omega_1/\eta$ для всех Z, таких что $\alpha Z \ll 1$.

ЛИТЕРАТУРА

- 1. F. Schnaidt, Ann. Physik 413, 89 (1934).
- 2. M. Gavrila, Phys. Rev. A 6, 1348 (1972).
- 3. И. Г. Каплан, Г. Л. Юдин, ЖЭТФ 69, 9 (1975).
- M. Ya. Amusia and A. I. Mikhailov, J. Phys. B 28, 1723 (1995).
- E. G. Drukarev, A. I. Mikhailov, and I. A. Mikhailov, Phys. Rev. A 82, 023404 (2010).
- V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, *Quantum Electrodynamics*, Pergamon, Oxford (1982), c. 356.
- В. Г. Горшков, А. И. Михайлов, С. Г. Шерман, ЖЭТФ 64, 1128 (1973).
- В. Г. Горшков, А. И. Михайлов, С. Г. Шерман, ЖЭТФ 77, 31 (1979).

- P. M. Bergstrom, Jr., T. Surić, K. Pisk, and R. H. Pratt, Phys. Rev. A 48, 1134 (1993).
- V. Florescu and R. H. Pratt, Phys. Rev. A 80, 033421 (2009).
- В. Г. Горшков, А. И. Михайлов, С. Г. Шерман, Препринт ЛИЯФ им. Б. П. Константинова АН СССР № 119 (1974).
- T. Surić, K. Pisk, B. A. Logan, and R. H. Pratt, Phys. Rev. Lett. 73, 790 (1994).
- **13**. М. Я. Амусья, А. И. Михайлов, ЖЭТФ **111**, 862 (1997).
- **14**. А. В. Нефёдов, Письма в ЖЭТФ **98**, 3 (2013).
- J. H. McGuire, S. Itza-Ortiz, A. L. Godunov et al., Phys. Rev. A 62, 012702 (2000).
- 16. S. F. Itza-Ortiz, A. L. Godunov, J. Wang, and J. H. McGuire, J. Phys. B 34, 3477 (2001).
- 17. А. И. Михайлов, А. В. Нефёдов, ЯФ 80, 293 (2017).