УСЛОВИЯ ПРИМЕНИМОСТИ ПРИБЛИЖЕНИЯ, ПРЕДПОЛАГАЮЩЕГО МАЛОЕ ВЛИЯНИЕ ТОРМОЖЕНИЯ ИЗЛУЧЕНИЕМ НА ДВИЖЕНИЕ КЛАССИЧЕСКОГО ЭЛЕКТРОНА В ПОЛЕ МОНОХРОМАТИЧЕСКОЙ ПЛОСКОЙ ВОЛНЫ

А. В. Пересторонин^{*}, А. Л. Карузский

Физический институт им. П. Н. Лебедева Российской академии наук 119991, Москва, Россия

> Поступила в редакцию 16 августа 2021 г., после переработки 16 августа 2021 г. Принята к публикации 4 октября 2021 г.

В произвольной инерциальной системе отсчета рассматривается задача о движении классического электрона в поле монохроматической плоской волны произвольной поляризации (линейной, круговой или эллиптической). Показано, что отношение энергии, излучаемой ускоренно движущимся в поле волны электроном за время равное периоду, к средней энергии колебательного движения электрона может быть выражено через два безразмерных релятивистски инвариантных параметра. В качестве критерия, определяющего границу применимости приближения, предполагающего малое влияние торможения излучением на движение классического электрона в поле монохроматической плоской волны, принято условие равенства энергии, излучаемой электроном за время равное периоду, и средней энергии колебательного движения. Граница применимости приближения построена в пространстве двух безразмерных инвариантных параметров. В системе отсчета, в которой электрон покоился до прихода волны с резким передним фронтом, один из этих параметров пропорционален частоте падающей волны, а другой — ее интенсивности.

DOI: 10.31857/S0044451022010011

1. ВВЕДЕНИЕ

В классической электродинамике вывод о наличии силы радиационного трения, действующей на ускоренно движущийся электрон, следует из анализа баланса энергии и импульса системы, включающей в себя заряженную частицу и поле, при учете излучения. Ускоренно движущийся электрон, имеющий заряд q = -e, излучает. В нерелятивистском случае мгновенная мощность \mathcal{P}^{inst} этого излучения определяется [1] выражением

$$\mathcal{P}^{inst} = \frac{2}{3} \frac{e^2 a^2}{c^3},\tag{1}$$

где c — скорость света, a — абсолютное значение вектора трехмерного ускорения **a** электрона ($a = |\mathbf{a}|$). Необходимость перехода от уравнения

$$m_e \mathbf{a} = \mathbf{f}^{ext},\tag{2}$$

определяющего закон движения электрона массы m_e под действием внешней силы \mathbf{f}^{ext} , к уравнению

$$m_e \mathbf{a} = \mathbf{f}^{ext} + \mathbf{f}^{rad},\tag{3}$$

в котором наряду с действующей на электрон внешней силой содержится еще и сила радиационного трения \mathbf{f}^{rad} , возникает как результат учета баланса энергии и импульса в системе при излучении [1–3], поскольку в общем случае работы, совершаемой над зарядом силой \mathbf{f}^{ext} , недостаточно для того, чтобы компенсировать потери энергии, возникающие вследствие излучения ускоренно движущегося электрона.

Хорошо известно, что в нерелятивистском случае торможение излучением оказывает малое влия-

^{*} E-mail: anatoly@sci.lebedev.ru, perestoroninav@lebedev.ru

ние на движение электрона в электромагнитном поле. Сравнение абсолютных значений векторов \mathbf{f}^{ext} и \mathbf{f}^{rad} выполнено, например, в книге [1]. В §75 книги [1] показано, что условие малости

$$\left|\mathbf{f}^{rad}\right| \ll \left|\mathbf{f}^{ext}\right| \tag{4}$$

сил торможения по сравнению с силой, действующей на электрон со стороны волнового электромагнитного поля, которое характеризуется длиной волны λ , соответствует неравенству

$$\lambda \gg \frac{e^2}{m_e c^2}.$$
 (5)

При выводе условия (5) не учитывались числовые коэффициенты порядка единицы и π . Если повторить вычисления, сделанные в § 75 книги [1], не отбрасывая числовые коэффициенты и используя соотношения

$$k_4 = \frac{\omega}{c} = \frac{2\pi\nu}{c} = \frac{2\pi}{\lambda} = \frac{2\pi}{cT_\omega} \tag{6}$$

для модуля волнового вектора, обозначенного здесь как k_4 , круговой частоты излучения ω , частоты ν , длины волны λ и периода колебаний T_{ω} монохроматического излучения, то условие (5) (уравнение (75.11) в [1]) будет иметь вид

$$\lambda \gg \frac{4\pi}{3} \frac{e^2}{m_e c^2}.$$
 (7)

Обозначая величину классического радиуса электрона как

$$r_e = \frac{e^2}{m_e c^2},\tag{8}$$

перепишем (7) в форме

$$\lambda \gg \frac{4\pi}{3} r_e$$
 или $\omega \ll \frac{3}{2} \frac{c}{r_e}$. (9)

При этом сама возможность классического, не квантового рассмотрения задачи о взаимодействии монохроматического излучения со свободным электроном, как известно [1], ограничена в силу необходимости учета квантовых эффектов в том случае, когда энергия кванта излучения $\hbar\omega = h\nu$, где $\hbar = h/2\pi$ — приведенная постоянная Планка, становится сравнима с энергией, соответствующей массе покоя электрона m_ec^2 , или длина волны излучения становится сравнима с комптоновской длиной волны электрона

$$\lambda_C = \frac{h}{m_e c} = \frac{2\pi\hbar}{m_e c} = 2\pi\lambda_C,\tag{10}$$

где $\lambda_C = \lambda_C/2\pi$ — приведенная комптоновская длина. Как следует из определений (8) и (10) и выражения для постоянной тонкой структуры

$$\alpha = \frac{e^2}{\hbar c} \approx \frac{1}{137},\tag{11}$$

приведенная комптоновская длина волны электрона $\lambda_C = r_e/\alpha$ приблизительно в 137 раз больше классического радиуса электрона r_e , а для комптоновской длины волны имеем

$$\lambda_C = 2\pi \lambda_C = \frac{2\pi}{\alpha} r_e \approx 861 r_e.$$
(12)

При выполнении условия

$$\lambda \gg \lambda_C$$
 или $\hbar \omega \ll m_e c^2$, (13)

которое обеспечивает корректность применения классического подхода к анализу поведения электрона в волновом поле, условие (9) также выполняется в силу (12) и с учетом неравенства $2\pi/\alpha \approx 861 > 4\pi/3$. Таким образом, сила торможения излучением мала по сравнению с внешней силой, действующей на электрон со стороны волнового электромагнитного поля, в том случае, когда вообще возможен классический подход к рассматриваемой задаче. Этот вывод сделан в [1] в рамках предположения о том, что скорость движения электрона в волне мала по сравнению со скоростью света.

Кроме того, для применимости классического подхода необходимо, чтобы напряженность поля волны была мала по сравнению с величиной $m_e^2 c^4/e^3$. Поля $\sim m_e^2 c^4/e^3$ являются границей, за которой классическая электродинамика приводит к внутренним противоречиям [1]. Поскольку интенсивность монохроматической плоской волны *I* зависит только от напряженности поля волны, соответствующая этой напряженности $\sim m_e^2 c^4/e^3$ интенсивность ограничивает область применимости классического подхода.

Частный случай предельно релятивистского движения классического электрона в поле монохроматической плоской волны круговой поляризации был проанализирован в работе [4]. Для системы отсчета, в которой электрон в среднем покоится, было получено условие (уравнение (2) в [4]), при выполнении которого влияние сил радиационного трения на движение электрона превышает влияние силы, действующей со стороны электромагнитного поля волны. Из выражения (уравнение (2) в [4]) для границы пределов применимости приближения, предполагающего малое влияние торможения излучением на движение классического электрона, следует, что в рассматриваемых условиях уравнение границы в координатах (I, ω) может быть описано зависимостью $I \propto \omega^{4/3}$.

Приведенные выше соотношения, определяющие уравнения границ применимости приближения, предполагающего малое влияние торможения излучением на движение классического электрона в поле монохроматической плоской волны, не имеют инвариантного характера, поскольку рассматриваются в фиксированной системе отсчета, в то время как интенсивность и частота волны зависят от используемой системы отсчета. Кроме того, эти оценки относятся к различным частным случаям (нерелятивистское или релятивистское движение электрона, круговая поляризация волны).

В настоящей работе задача о движении классического электрона в поле монохроматической плоской волны произвольной поляризации (линейной, круговой или эллиптической) рассматривается в произвольной инерциальной системе отсчета. Полученные результаты включают в себя частные случаи, описанные выше. Граница применимости приближения построена в пространстве двух безразмерных релятивистски инвариантных параметров. В системе отсчета, в которой электрон покоился до прихода волны с резким передним фронтом, один из этих параметров пропорционален частоте падающей волны, а другой — ее интенсивности.

2. ПОСТАНОВКА ЗАДАЧИ

Как было отмечено выше, выяснение пределов применимости приближения, в котором торможение излучением мало, выполнено в [1] путем сравнения абсолютных значений векторов силы торможения \mathbf{f}^{rad} и силы \mathbf{f}^{ext} , действующей на электрон со стороны внешнего электромагнитного поля. Ясно, что такой способ не является единственным и вместо сравнения модулей мгновенных значений сил $|\mathbf{f}^{rad}|$ и $|\mathbf{f}^{ext}|$ можно сравнивать работу, совершаемую этими силами за определенный промежуток времени.

В случае периодического с периодом T или квазипериодического движения заряда для любых физических величин, характеризующих это движение, могут быть вычислены их усредненные по времени значения. Например, усредненная по времени мощность излучения \mathcal{P} будет выражаться через величину мгновенной мощности формулой

$$\mathcal{P} = \left\langle \mathcal{P}^{inst} \right\rangle_t = \frac{1}{T} \int_{t_0}^{t_0+T} \mathcal{P}^{inst}(t) \, dt.$$
(14)

Здесь и далее операция усреднения обозначается угловыми скобками с указанием параметра (в (14) это время t), по которому проводится усреднение. Следствием определения мгновенной мощности излучения \mathcal{P}^{inst} как отношения дифференциала излучаемой энергии к дифференциалу времени и формулы (14) является соотношение

$$\Delta \mathcal{E}_T = \mathcal{P} T, \tag{15}$$

выражающее полное количество энергии $\Delta \mathcal{E}_T$, излучаемое зарядом за время, равное периоду T, через интегральную среднюю мощность излучения \mathcal{P} и период T.

Для того чтобы оценить степень влияния излучательных энергетических потерь на периодическое или квазипериодическое движение заряда, следует сравнивать полное количество энергии $\Delta \mathcal{E}_T$ с другой характерной величиной, имеющей размерность энергии. В случае если периодическое или квазипериодическое движение заряда рассматривается в системе отсчета, в которой заряд в среднем покоится, т.е. средняя скорость заряда равна нулю, такой характерной величиной будет средняя кинетическая энергия частицы $\langle \mathcal{K} \rangle_t$. Выполнение условия $\Delta \mathcal{E}_T = \langle \mathcal{K} \rangle_t$ будет означать, что за время равное периоду заряд потеряет за счет излучения всю свою кинетическую энергию. В этом случае влиянием торможения излучением на движение классического электрона уже нельзя пренебрегать. При выполнении условия

$$\frac{\Delta \mathcal{E}_T}{\langle \mathcal{K} \rangle_t} \ll 1 \tag{16}$$

влиянием торможения излучением на периодическое или квазипериодическое движение электрона можно пренебречь.

Хорошо известно (см., например, [1]), что в поле монохроматической плоской волны круговой поляризации электрон движется по окружности с постоянной угловой скоростью. Считая движение электрона нерелятивистским и влияние силы радиационного трения малым, найдем, к каким ограничениям на длину волны или частоту падающего излучения приводит условие (16). В системе отсчета, в которой электрон в среднем покоится (дрейфовая скорость равна нулю), постоянное значение имеет модуль вектора мгновенной скорости электрона v = $= |\mathbf{v}|$, где \mathbf{v} — трехмерный вектор мгновенной скорости, а период движения электрона T равен периоду колебаний волны $T_{\omega}, T = T_{\omega}$. Ускорение и скорость электрона связаны в рассматриваемом случае простым соотношением

$$a = \omega v. \tag{17}$$

Кинетическая энергия имеет в рассматриваемых условиях постоянное значение $\mathcal{K} = m_e v^2/2$. Из формул (1), (6), (15) и (17) получим отношение излучаемой зарядом энергии к кинетической энергии частицы:

$$\frac{\Delta \mathcal{E}_T}{\mathcal{K}} = \frac{8\pi}{3} r_e \frac{\omega}{c}.$$

Тогда условие (16) приводит к следующим ограничениям на длину волны или частоту падающего излучения:

$$\lambda \gg \frac{16\pi^2}{3} r_e \quad \text{или} \quad \omega \ll \frac{3}{8\pi} \frac{c}{r_e}. \tag{18}$$

Граничные значения в условиях (9) и (18) несколько различаются (в $4\pi \approx 13$ раз), поскольку (9) получено, исходя из требования (4), а (18) — исходя из требования (16).

В приведенном выше примере, во-первых, предполагается, что скорость движения электрона много меньше скорости света, во-вторых, задача рассматривается только в одной системе отсчета, где средняя скорость движения электрона равна нулю, в-третьих, рассматривается только случай круговой поляризации, а в общем случае монохроматическая плоская волна может иметь линейную, круговую или эллиптическую поляризацию. В рамках используемого в настоящей работе подхода, описанного далее, все эти три ограничения отсутствуют.

Для анализа движения электрона в поле монохроматической плоской волны применяется 4-векторное уравнение:

$$m_e c W_i = \frac{-e}{c} F_{ik} U_k, \qquad (19)$$

где $U_i - 4$ -вектор скорости, $W_i = dU_i/ds - 4$ -вектор ускорения электрона, F_{in} — тензор электромагнитного поля монохроматической плоской волны. Латинские индексы i, k, \ldots пробегают значения от 1 до 4. Здесь, так же как в [5,6], используется форма записи 4-векторных величин, в которой временна́я компонента 4-вектора считается действительной величиной, а пространственные компоненты — мнимыми,

$$X_i = \begin{cases} X_\alpha \\ X_4 \end{cases} = \begin{cases} ix_\alpha \\ x_4 \end{cases} = \begin{cases} ix_\alpha \\ ct \end{cases}$$

Греческие индексы α, β, \ldots пробегают значения от 1 до 3. Три пространственные компоненты x_{α} 4-вектора X_i являются составляющими трехмерного вектора **х**. Дифференциал собственного времени матери-

$$ds = \sqrt{\left(dX_i\right)^2} = c \, dt \sqrt{1 - \frac{\mathbf{v}^2}{c^2}},$$

альной точечной частицы выражается равенством

где $\mathbf{v} = d\mathbf{x}/dt$, а 4-скорость

$$\frac{dX_i}{ds} = U_i = \begin{cases} U_\alpha \\ U_4 \end{cases} = \begin{cases} iu_\alpha \\ u_4 \end{cases},$$

$$u_4 = \frac{1}{\sqrt{1 - \mathbf{v}^2/c^2}}, \quad \mathbf{u} = u_4 \frac{\mathbf{v}}{c},$$
(20)

является единичным 4-вектором $U_i^2 = 1$. В рамках этих определений квадрат времениподобных 4-векторов является положительной величиной, а пространственноподобных — отрицательной.

Использование подхода, описанного в [5] и более подробно в [6] позволяет на основе решения уравнения (19) получить выражения как для мгновенного значения квадрата 4-ускорения W^2_n электрона, так и для усредненной по времени величины $\langle -W_n^2 \rangle_{\iota}$, от которой зависит средняя мощность излучения \mathcal{P} . По формуле (15) для любой инерциальной системы отсчета можно определить полное количество энергии $\Delta \mathcal{E}_T$, излучаемое электроном за время равное периоду. Эту энергию $\Delta \mathcal{E}_T$ будем сравнивать со средней энергией колебательного движения электрона. Равенство этих величин определяет границу между областью, в которой влияние торможения излучением на движение классического электрона в поле монохроматической плоской волны мало, и областью, в которой это приближение неприменимо.

3. ПОЛНОЕ КОЛИЧЕСТВО ЭНЕРГИИ, ИЗЛУЧАЕМОЙ ЭЛЕКТРОНОМ ЗА ВРЕМЯ РАВНОЕ ПЕРИОДУ

Согласно (15) и формуле (5) из [5] в произвольной инерциальной системе отсчета полное количество энергии, излучаемой электроном за время равное периоду, определяется выражением

$$\Delta \mathcal{E}_T = \frac{2}{3} e^2 c \left\langle -W_n^2 \right\rangle_t T. \tag{21}$$

Поскольку 4-ускорение, компоненты которого имеют размерность, равную размерности обратной длины, является пространственноподобным 4-вектором, квадрат которого является отрицательной величиной, в обеих частях равенства (21) содержатся положительно определенные величины.

В произвольной инерциальной системе отсчета зависимость мгновенного значения квадрата 4-ускорения электрона, движущегося в поле монохроматической плоской волны, от фазы волны φ в точке нахождения частицы определяется [6] выражением

$$-W_n^2 = \mu^2 \left(1 + \mu^2\right) \left(K_p \overline{U}_p\right)^2 \left(1 + \gamma \cos\left(2\varphi + \delta\right)\right), \quad (22)$$

где $\delta/2$ — начальная фаза волны, γ — параметр эллиптичности волны, который связан с величинами большой \mathfrak{a} и малой \mathfrak{b} полуосей эллипса поляризации и его эксцентриситетом ϵ соотношениями

где

$$\epsilon = \sqrt{1 - \mathfrak{b}^2/\mathfrak{a}^2}.$$

 $\gamma = \frac{1 - \mathfrak{b}^2/\mathfrak{a}^2}{1 + \mathfrak{b}^2/\mathfrak{a}^2} = \frac{\epsilon^2}{2 - \epsilon^2},$

Линейной поляризации волны соответствует значение параметра $\gamma = 1$, а круговой поляризации значение $\gamma = 0$. Содержащаяся в (22) релятивистски инвариантная безразмерная величина

$$\mu^{2} = \frac{r_{e}\lambda^{2}}{\pi} \frac{I}{m_{e}c^{3}} = \frac{4\pi r_{e}}{m_{e}c} \frac{I}{\omega^{2}}$$
(23)

в два раза меньше аналогичной безразмерной величины, нередко используемой различными авторами при анализе релятивистского поведения заряда в волне (в работе [7] она обозначена как μ , в работе [8] — как q^2 , в работе [9] — как x^2). В (22) содержится инвариантное скалярное произведение $(K_p \overline{U}_p)$ двух 4-векторов: волнового 4-вектора нулевой длины

$$K_{i} = \begin{cases} K_{\alpha} \\ K_{4} \end{cases} = \begin{cases} ik_{\alpha} \\ k_{4} \end{cases} = \begin{cases} ik_{\alpha} \\ \omega/c \end{cases}$$
$$k_{\alpha}^{2} = k_{4}^{2}, \quad K_{n}^{2} = 0,$$

где k_{α} являются составляющими трехмерного волнового вектора **k**, и постоянного единичного 4-вектора дрейфовой скорости электрона в поле монохроматической плоской волны

$$\overline{U}_{i} = \left\{ \frac{\overline{U}_{\alpha}}{\overline{U}_{4}} \right\} = \left\{ \frac{i\overline{u}_{\alpha}}{\overline{u}_{4}} \right\},$$

$$\overline{u}_{4} = \frac{1}{\sqrt{1 - \overline{\mathbf{v}}^{2}/c^{2}}}, \quad \overline{\mathbf{u}} = \frac{\overline{u}_{4}\overline{\mathbf{v}}}{c}.$$
(24)

Определение 4-вектора дрейфовой скорости (24) отличается от определения 4-вектора мгновенной скорости (20) тем, что вместо мгновенной скорости $\mathbf{v} = -d\mathbf{x}/dt$ в (24) используется вектор дрейфовой скорости электрона в поле монохроматической плоской волны $\overline{\mathbf{v}} = \langle \mathbf{v} \rangle_t$. Операция усреднения вектора

мгновенной скорости электрона \mathbf{v} по времени системы отсчета t определена аналогично (14). Мгновенное значение квадрата 4-ускорения (22) зависит от инвариантной переменной фазы волны

$$\varphi = K_n X_n = \frac{\omega}{c} \left(ct - \mathbf{n}_k \cdot \mathbf{x} \right), \quad \mathbf{n}_k = \frac{\mathbf{k}}{k_4}, \qquad (25)$$

в 4-точке X_i , в отношении которой подразумевается ее принадлежность к мировой линии электрона.

Для вычисления по формуле (21) полного количества энергии, излучаемой электроном за время равное периоду, необходимо усреднить по времени системы отсчета выражение (22). Такое усреднение, приводящее к результату

$$\left\langle -W_n^2 \right\rangle_t = \left(K_p \overline{U}_p \right)^2 \mu^2 \left(1 + \mu^2 - \frac{\gamma^2 \mu^2 K_4}{4 \overline{U}_4 \left(K_l \overline{U}_l \right)} \right), \quad (26)$$

было выполнено в [6] и использовалось в [5] без вывода. В общем случае результаты операций усреднения периодических величин по параметру времени системы отсчета t и по параметру фазы волны φ не совпадают. Так, из (22) следует равенство

$$\left\langle -W_n^2 \right\rangle_{\varphi} = \mu^2 \left(1 + \mu^2 \right) \left(K_p \overline{U}_p \right)^2,$$
 (27)

отличающееся от (26). В частном случае круговой поляризации $\gamma = 0$ падающей волны результаты (26) и (27) совпадают.

В том случае, когда тензор электромагнитного поля F_{in} описывает поле монохроматической плоской волны, выполняется равенство $F_{in}K_n = 0$, соответствующее соотношениям в векторном виде $(\mathbf{n_k} \cdot \mathbf{E}) = 0$ и $\mathbf{E} = [\mathbf{B} \times \mathbf{n_k}]$, которые отражают свойство поперечности поля волны и описывают связь между векторами напряженности электромагнитного поля \mathbf{E} и \mathbf{B} .

Из равенства $F_{in}K_n = 0$ и уравнения (19) сразу следует, что при движении электрона в поле монохроматической плоской волны сохраняется инвариантная скалярная величина K_nU_n , которая, как видно из определения (25), равна производной фазы по собственному времени: $K_nU_n = d\varphi/ds$. Пропорциональность дифференциала фазы $d\varphi$ дифференциалу собственного времени ds приводит к равенству результатов операций усреднения по фазе и по собственному времени. Используя соотношения

$$\left\langle -W_{n}^{2}\right\rangle _{\varphi}=\left\langle -W_{m}^{2}\right\rangle _{s}=\left. \left\langle -W_{p}^{2}\right\rangle _{t}\right|_{\gamma=0}$$

представим средне
е $\left<-W_n^2\right>_t,$ определяемое равенством (26), в форме произведения двух величин

$$\left\langle -W_{n}^{2}\right\rangle _{t}=\kappa_{1}\left\langle -W_{m}^{2}\right\rangle _{s}, \qquad (28)$$

одна из которых, $\langle -W_m^2 \rangle_s$, инвариантна относительно преобразований Лоренца, т.е. имеет одинаковое значение во всех инерциальных системах отсчета, а другая, κ_1 , таким свойством не обладает.

Выясним свойства неинвариантного в общем случае коэффициента

$$\kappa_1 = 1 - \frac{\gamma^2}{4} \frac{\mu^2}{1 + \mu^2} \frac{K_4}{K_p \overline{U}_p} \frac{1}{\overline{U}_4},$$
 (29)

который в частном случае круговой поляризации $\gamma = 0$ падающей волны равен единице. Содержащиеся во втором слагаемом в правой части (29) множители имеют области значений, определяемые неравенствами

$$0\leqslant \frac{\gamma^2}{4}\leqslant \frac{1}{4}, \quad 0<\frac{\mu^2}{1+\mu^2}<1.$$

Третий множитель во втором слагаемом (29) преобразуем к виду

$$\begin{split} \frac{K_4}{K_p \overline{U}_p} \frac{1}{\overline{U}_4} &= \frac{K_4}{K_4 \overline{U}_4 \left(1 + K_\alpha \overline{U}_\alpha / K_4 \overline{U}_4\right)} \frac{\overline{U}_4}{\overline{U}_4^2} = \\ &= \frac{1 - \overline{\mathbf{v}}^2 / c^2}{1 - \mathbf{n}_{\mathbf{k}} \cdot \overline{\mathbf{v}} / c} = \frac{1 - \overline{v}^2 / c^2}{1 - (\overline{v} / c) \cos \theta}, \end{split}$$

где $\overline{v} = |\overline{v}|$, а θ — угол между направлением распространения волны и направлением вектора дрейфовой скорости электрона. Для знаменателя последней дроби выполняются условия

$$1 - \overline{v}/c \leqslant 1 - (\overline{v}/c)\cos\theta \leqslant 1 + \overline{v}/c,$$

откуда следует двойное неравенство

$$\frac{1-\overline{v}^2/c^2}{1+\overline{v}/c}\leqslant \frac{1-\overline{v}^2/c^2}{1-(\overline{v}/c)\cos\theta}\leqslant \frac{1-\overline{v}^2/c^2}{1-\overline{v}/c}$$

С учетом алгебраического тождества для разности квадратов и невозможности в рамках специальной теории относительности существования у материальной частицы скорости, достигающей скорости света, получаем область значений третьего множителя:

$$0 < \frac{K_4}{K_p \overline{U}_p} \frac{1}{\overline{U}_4} < 2.$$

Отсюда следует, что областью значений неинвариантного коэффициента κ_1 , определенного формулой (29), является промежуток

$$1/2 \leqslant \kappa_1 \leqslant 1. \tag{30}$$

Соотношения (28) и (30) демонстрируют, что неинвариантная величина $\langle -W_n^2 \rangle_t$ в любом возможном

случае незначительно отличается от инвариантной величины $\langle -W_m^2 \rangle_{\rm s}$.

Содержащая в формуле (21) величина периода может быть представлена [5,6] в виде выражений

$$T = \frac{2\pi}{c} \frac{\overline{U}_4}{\left(K_n \overline{U}_n\right)} = T_\omega \frac{K_4 \overline{U}_4}{\left(K_p \overline{U}_p\right)} = \frac{T_\omega}{1 - \mathbf{n}_k \cdot \overline{\mathbf{v}}/c}.$$
 (31)

Подстановка (28) и (31) в (21) дает

$$\Delta \mathcal{E}_T = \frac{4\pi}{3} e^2 \kappa_1 \frac{\langle -W_n^2 \rangle_s}{\left(K_p \overline{U}_p\right)} \overline{U}_4. \tag{32}$$

Полное количество энергии, излучаемой электроном за время равное периоду, определяемое выражением (32), в котором содержатся как неинвариантные, так и инвариантные величины, будем сравнивать со средней энергией колебательного движения электрона в поле монохроматической плоской волны.

4. СРЕДНЯЯ ЭНЕРГИЯ КОЛЕБАТЕЛЬНОГО ДВИЖЕНИЯ ЭЛЕКТРОНА В ПОЛЕ МОНОХРОМАТИЧЕСКОЙ ПЛОСКОЙ ВОЛНЫ

Полную мгновенную энергию движущейся частицы $m_e c^2 / \sqrt{1 - v^2/c^2}$, которую запишем с использованием обозначений (20) в виде $m_e c^2 U_4$,

$$m_e c^2 U_4 = \mathcal{K} + m_e c^2,$$

принято разделять на кинетическую энергию

$$\mathcal{K} = m_e c^2 (U_4 - 1) = \frac{m_e c^2}{\sqrt{1 - v^2/c^2}} - m_e c^2$$

и энергию покоя $m_e c^2$. В рамках используемого подхода, в котором существенную роль играет наличие дрейфовой скорости электрона в поле волны, желательно было бы выделить из всей величины кинетической энергии ту часть энергии \mathcal{K}^{osc} , которая соответствует колебательному движению электрона, и ту часть энергии \mathcal{K}^{drift} , которая соответствует движению колеблющегося электрона как целого, происходящему с постоянной дрейфовой скоростью. Для этого запишем равенство

$$\mathcal{K} = \mathcal{K}^{osc} + \mathcal{K}^{drift}$$

и потребуем, чтобы в системе отсчета, в которой электрон в среднем покоится, т.е. его дрейфовая скорость равна нулю, $\overline{\mathbf{v}} = 0$, величина \mathcal{K}^{drift} принимала нулевое значение. Поскольку условие $\overline{\mathbf{v}} = 0$, соответствует равенству $\overline{U}_4 = 1$, для \mathcal{K}^{drift} получим выражение

$$\mathcal{K}^{drift} = m_e c^2 \left(\overline{U}_4 - 1 \right).$$

Тогда мгновенное значение энергии колебательного движения электрона в произвольной инерциальной системе отсчета будет определяться формулой

$$\mathcal{K}^{osc} = m_e c^2 \left(U_4 - \overline{U}_4 \right). \tag{33}$$

Как следует из (33) и определения \mathcal{K} в системе отсчета, в которой электрон в среднем покоится, выполняется равенство $\mathcal{K} = \mathcal{K}^{osc}$. В нерелятивистском случае $v^2 \ll c^2$, $\overline{v}^2 \ll c^2$ из формулы (33) получаем

$$\mathcal{K}^{osc} = \frac{m_e v^2}{2} - \frac{m_e \overline{v}^2}{2}$$

В произвольной инерциальной системе отсчета 4-вектор скорости электрона, движущегося в поле монохроматической плоской волны, может быть представлен [5,6] в форме

$$U_{i}(\Phi) = \sqrt{1 + \mu^{2}} \,\overline{U}_{i} + Z_{i}^{(1)}\cos\Phi + Z_{i}^{(2)}\sin\Phi + Z_{i}^{(3)}\cos2\Phi + Z_{i}^{(4)}\sin2\Phi. \quad (34)$$

Здесь величина Φ ,

$$\Phi = \varphi - \varphi_0, \tag{35}$$

является разностью между значением фазы волны φ в произвольной 4-точке X_i , в отношении которой подразумевается ее принадлежность к мировой линии электрона, и значением фазы волны $\varphi_0 = K_m X_m^0$ в той точке мировой линии X_i^0 , которая принята за начальную. Содержащиеся в (34) постоянные безразмерные 4-векторы $Z_i^{(1)}$, $Z_i^{(2)}$, $Z_i^{(3)}$ и $Z_i^{(4)}$ зависят от начальных условий и поляризации волны. В случае круговой поляризации волны $Z_i^{(3)} = Z_i^{(4)} = 0$. Кроме того, следствием четырехмерной «перпендикулярности» каждого из четырех 4-векторов $Z_i^{(1)}$, $Z_i^{(2)}$,... и волнового 4-вектора $Z_n^{(1)} K_n = 0$, $Z_n^{(2)} K_n = 0$,... является простая формула

$$(K_n U_n) = \sqrt{1 + \mu^2} \left(K_m \overline{U}_m \right), \qquad (36)$$

которая будет использована далее.

Для вычисления средней энергии колебательного движения представим \mathcal{K}^{osc} с помощью (33) и (34) в форме

$$\frac{\mathcal{K}^{osc}}{m_e c^2} = \left(\sqrt{1+\mu^2} - 1\right) \overline{U}_4 + \psi\left(\Phi\right),$$

где $\psi(\Phi)$ — сумма четырех последних слагаемых в выражении для временно́й компоненты 4-вектора скорости, следующем из (34) при i = 4. Из (35) следует равенство $d\Phi = d\varphi$, которое с учетом пропорциональности дифференциала фазы $d\varphi$ дифференциалу собственного времени ds приводит к равенству результатов операций усреднения по разности фаз Φ и по собственному времени s. Поскольку $\langle \psi(\Phi) \rangle_{\Phi} = 0$, для усредненной по собственному времени энергии колебательного движения получим простое выражение

$$\frac{\langle \mathcal{K}^{osc} \rangle_s}{m_e c^2} = \left(\sqrt{1+\mu^2} - 1\right) \overline{U}_4. \tag{37}$$

В настоящей работе полное количество энергии, излучаемой электроном за время равное периоду, сравнивается со средней энергией колебательного движения электрона. При этом в работе применяются две различные операции усреднения — по времени системы отсчета и по собственному времени движущегося электрона, приводящие к не совпадающим результатам. Не было найдено убедительных критериев выбора между $\langle \mathcal{K}^{osc} \rangle_t$ и $\langle \mathcal{K}^{osc} \rangle_s$ для цели сравнения выбранной величины с полным количеством энергии $\Delta \mathcal{E}_T$, излучаемой электроном за время равное периоду. Однако, записывая связь между двумя различными средними в форме равенства

$$\langle \mathcal{K}^{osc} \rangle_t = \kappa_2 \, \left\langle \mathcal{K}^{osc} \right\rangle_s,$$
 (38)

можно показать, что областью значений неинвариантного коэффициента κ_2 является промежуток

$$1 \leqslant \kappa_2 < 1 + 8 + \frac{16}{27} \approx 9.59,$$
 (39)

т. е. средние значения $\langle \mathcal{K}^{osc} \rangle_t$ и $\langle \mathcal{K}^{osc} \rangle_s$ в любом возможном случае близки. Для обоснования двойного неравенства (39) коэффициент κ_2 был представлен в виде суммы трех слагаемых

$$\kappa_2 = 1 + \kappa_2^{(1)} + \kappa_2^{(2)},$$

в которой $\kappa_2^{(1)}$ и $\kappa_2^{(2)}$ зависят от параметра μ^2 , пропорционального произведению интенсивности на квадрат длины волны излучения, параметра эллиптичности волны γ , модуля вектора дрейфовой скорости \overline{v} , проекции $(\mathbf{n}_{\overline{v}}\mathbf{n}_{k}) = \cos\theta$ единичного вектора дрейфовой скорости электрона $\mathbf{n}_{\overline{v}} = \overline{v}/|\overline{v}|$ на направление распространения волны. Коэффициент $\kappa_2^{(2)}$ зависит еще и от проекций $(\mathbf{n}_{\overline{v}}\mathbf{n}_{\mathfrak{a}})$ и $(\mathbf{n}_{\overline{v}}\mathbf{n}_{\mathfrak{b}})$ вектора $\mathbf{n}_{\overline{v}}$ на единичные векторы $\mathbf{n}_{\mathfrak{a}}$ и $\mathbf{n}_{\mathfrak{b}}$, направленные вдоль большой и малой осей эллипса поляризации волны соответственно. Определение диапазонов изменения $\kappa_2^{(1)}$ и $\kappa_2^{(2)}$ было выполнено аналогично тому, как это сделано (30) в отношении κ_1 . Ввиду большого объема вычислений, выкладки, обосновывающие двойное неравенство (39), опущены.

5. ОТНОШЕНИЕ ЭНЕРГИИ, ИЗЛУЧАЕМОЙ ЗА ВРЕМЯ РАВНОЕ ПЕРИОДУ, К СРЕДНЕЙ ЭНЕРГИИ КОЛЕБАТЕЛЬНОГО ДВИЖЕНИЯ

Для сравнения энергии, излучаемой за время равное периоду, с усредненной по времени системы отсчета энергией колебательного движения запишем следующее из (8), (32), (37), (38) соотношение

$$\frac{\Delta \mathcal{E}_T}{\langle \mathcal{K}^{osc} \rangle_t} = \frac{4\pi}{3} \frac{\kappa_1}{\kappa_2} \frac{r_e \left\langle -W_i^2 \right\rangle_s}{\left(K_n \overline{U}_n\right)} \frac{1}{\sqrt{1+\mu^2}-1}.$$
 (40)

Область значений коэффициентов κ_1 и κ_2 определяется неравенствами (30) и (39) соответственно. Если же в знаменателе левой части (40) заменить $\langle \mathcal{K}^{osc} \rangle_t$ на $\langle \mathcal{K}^{osc} \rangle_s$, т. е. сравнивать энергию, излучаемую за время равное периоду, с усредненной по собственному времени энергией колебательного движения, то необходимости в использовании коэффициента κ_2 не будет. Выражение для $\Delta \mathcal{E}_T / \langle \mathcal{K}^{osc} \rangle_s$ повторяет правую часть формулы (40), в которой $\kappa_2 = 1$.

Соотношение (40) можно рассматривать как функцию двух инвариантных переменных, в качестве которых, с учетом связей (27) и (36), могут быть выбраны величины $\langle -W_i^2 \rangle_s$ и μ^2 или $(K_n \overline{U}_n)$ и μ^2 или $(K_m U_m)$ и μ^2 , зависящую также и от неинвариантной величины κ_1/κ_2 , значение которой в любом возможном случае не сильно отличается от единицы. Обозначив для краткости левую часть (40) как L и определив безразмерную инвариантную величину

$$\Gamma_{cl} = r_e \left(K_n U_n \right), \tag{41}$$

преобразуем (40) к виду

$$L(\mu^2, \Gamma_{cl}) = (4\pi/3) \Gamma_{cl} \left(\sqrt{1+\mu^2} + 1\right) \sqrt{1+\mu^2}.$$
(42)

Содержащийся в (40) коэффициент κ_1/κ_2 отброшен в (42) ввиду его близости к единице. Для преобразования от (40) к (42) использовались тождество

$$\mu^{2} = \left(\sqrt{1+\mu^{2}}+1\right)\left(\sqrt{1+\mu^{2}}-1\right)$$

и соотношения (27) и (36).

Целью преобразования величины L, характеризующей степень влияния возмущений, обусловленных радиационными потерями, на движение классического электрона в поле монохроматической плоской волны, является приведение этой величины к такой форме записи, в которой L зависит от инвариантных переменных, допускающих наиболее наглядную физическую интерпретацию. В рамках подхода квантовой электродинамики соответствующая $|\mu|$

величина, названная в [9] классическим параметром нелинейности, характеризует вероятность возникновения многоквантовых (многофотонных) процессов при взаимодействии электрона с электромагнитным полем. В рамках классической электродинамики μ^2 имеет смысл характеристики, определяющей необходимость учета релятивистских эффектов при анализе движения электрона в поле монохроматической плоской волны. Так, если в системе отсчета, в которой электрон в среднем покоится $(\overline{\mathbf{v}} = 0 \text{ и } \overline{U}_4 = 1)$, воспользоваться формулой (37), то при $\mu^2 = 1$ средняя энергия колебательного движения становится сравнима с энергией покоя электрона $\langle \mathcal{K}^{osc} \rangle_{c} \approx 0.4 \, m_{e} c^{2}$ и при анализе движения следует учитывать релятивистские эффекты. При $\mu^2 \ll 1$ движение электрона имеет нерелятивистский характер.

Физический смысл безразмерной инвариантной величины Γ_{cl} выясняется при анализе задачи в системе отсчета, в которой электрон покоился до прихода монохроматической плоской волны с резким передним фронтом. В этой системе отсчета скалярное произведение $(K_n U_n)$, сохраняющееся при движении электрона в поле монохроматической плоской волны, принимает значение $(K_n U_n) = K_4 = \omega/c$. Как следует из определения (41), в рассматриваемой системе отсчета круговая частота излучения выражается через Γ_{cl} формулой $\omega = c \Gamma_{cl}/r_e$. Вместо Γ_{cl} используем в 137 раз большую величину $\Gamma =$ $= (1/\alpha) \Gamma_{cl}$, которую с учетом (8) и (11) запишем в виде

$$\Gamma = \left(\hbar/m_e c\right) \left(K_n U_n\right). \tag{43}$$

В системе отсчета, в которой электрон покоился до прихода монохроматической плоской волны с резким передним фронтом, скалярное произведение (K_nU_n) в формуле (43) принимает значение $(K_nU_n) = K_4 = \omega/c$, откуда следует, что энергия кванта излучения $\hbar\omega = h\nu$ выражается через Γ формулой $\hbar\omega = \Gamma m_e c^2$.

Используя выражения (27), (36) и (43), представим произведение величин μ^2 и Γ^2 в форме

$$\mu^2 \, \Gamma^2 = \left(\frac{1}{\alpha}\right)^2 r_e^2 \left\langle -W_n^2 \right\rangle_s$$

и рассмотрим правую часть этого равенства, которую с учетом (8), (11) и (19) перепишем в виде

$$\left(\frac{1}{\alpha}\right)^2 r_e^2 \left\langle -W_n^2 \right\rangle_s = \left(\frac{\hbar}{m_e c}\right)^2 \left\langle -\left(\frac{-e}{m_e c^2} F_{ik} U_k\right)^2 \right\rangle_s.$$

Определяя безразмерную инвариантную величину

$$\chi = \frac{\hbar e}{m_e^3 c^4} \sqrt{\left\langle -\left(F_{ik}\left(m_e c \, U_k\right)\right)^2 \right\rangle_s} , \qquad (44)$$

заметим, что, за исключением использования в (44) операции усреднения по собственному времени, это тот же самый параметр, который был определен в работе [9] и интерпретировался как работа поля на комптоновской длине волны в системе покоя частицы, отнесенная к m_ec^2 . Согласно [9], параметр χ ответственен за величину квантовых нелинейных эффектов.

Как показано выше, квадрат величины (44) связан с безразмерными инвариантными параметрами μ^2 и Γ^2 простым соотношением

$$\chi^2 = \mu^2 \Gamma^2. \tag{45}$$

В системе отсчета, в которой электрон покоился до прихода волны, выразим χ^2 , используя (45), через интенсивность падающего излучения. В этой системе отсчета $\Gamma = \hbar \omega / (m_e c^2)$ и, следовательно,

$$\chi^2 = \frac{r_e \lambda^2}{\pi} \frac{I}{m_e c^3} \left(\frac{\hbar \omega}{m_e c^2}\right)^2 = 4\pi \alpha \frac{\lambda_C^3}{m_e c^3} I,$$

где в первом равенстве использована формула (23), а во втором — формулы (6), (8), (10), (11). Предыдущая формула, выражающая χ^2 через интенсивность I, может быть записана в виде равенства $\chi^2 = I/I^{cr}$, в котором критическая интенсивность I^{cr} имеет значение

$$I^{cr} = \frac{1}{4\pi\alpha} \frac{m_e c^3}{\chi_C^3} \approx 4.648 \cdot 10^{29} \text{ Br/cm}^2.$$
(46)

При этой интенсивности модуль вектора напряженности электрического поля $|\mathbf{E}| = E^{cr}$ волны круговой поляризации удовлетворяет условию $eE^{cr}\lambda_C =$ $= m_e c^2$, которое определяет критическое поле квантовой электродинамики [10]. Критическая интенсивность (46) (иногда используется в два раза меньшее значение [11]) играет важную роль при теоретическом анализе эффекта рождения частиц из вакуума интенсивным электромагнитным полем [11, 12].

Таким образом, из (42), (43) и (45) следует формула

$$L\left(\chi^2,\Gamma\right) = \frac{4\pi}{3}\alpha\Gamma\left(\sqrt{1+\frac{\chi^2}{\Gamma^2}}+1\right)\sqrt{1+\frac{\chi^2}{\Gamma^2}},\quad(47)$$

определяющая отношение энергии, излучаемой за время равное периоду, к средней энергии колеба-

тельного движения как функцию двух инвариантных параметров. В системе отсчета, в которой электрон покоился до прихода волны, один из этих параметров оказывается пропорционален частоте падающей волны $\Gamma = \hbar \omega / (m_e c^2)$, а другой — ее интенсивности $\chi^2 = I/I^{cr}$.

6. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В правой части формулы (47), которая будет обсуждаться далее, содержится постоянная α , имеющая квантовое происхождение, и переменные χ и Γ , определенные формулами соответственно (44) и (43), в которых также содержатся квантовомеханические постоянные α или \hbar . Однако вывод формулы (42) и следующей из нее формулы (47), определяющих величину относительных потерь на излучение, выполнен в рамках классической электродинамики, а значит, правая часть равенства (47) может быть выражена через классические величины, не содержащие в их определениях α или \hbar . Действительно, использование вместо χ^2 , связанного с Γ соотношением (45), другого инвариантного параметра $\chi^2_{cl} = \mu^2 \Gamma^2_{cl}$ позволяет записать (47) в виде формулы

$$L\left(\chi_{cl}^2,\Gamma_{cl}\right) = \frac{4\pi}{3}\Gamma_{cl}\left(\sqrt{1+\frac{\chi_{cl}^2}{\Gamma_{cl}^2}}+1\right)\sqrt{1+\frac{\chi_{cl}^2}{\Gamma_{cl}^2}},$$

в правой части которой содержатся величины классической электродинамики.

Для анализа поведения функции двух переменных (47) построим линию уровня $L(\Gamma, \chi^2) = 1$, которая показана красным цветом на рис. 1. Эту линию можно считать графиком функции $\Gamma(\chi^2)$, заданной неявным образом с помощью функционального уравнения $L(\Gamma, \chi^2) = 1$. Для построения линии уровня использовалось параметрическое представление

$$\Gamma(\tau) = \frac{3}{4\pi} \frac{1}{\alpha} \frac{1}{\left(\sqrt{1+\tau}+1\right)\sqrt{1+\tau}},$$
$$\chi^{2}(\tau) = \tau \left(\frac{3}{4\pi} \frac{1}{\alpha} \frac{1}{\left(\sqrt{1+\tau}+1\right)\sqrt{1+\tau}}\right)^{2},$$

в котором координаты Γ и χ^2 точек, принадлежащих линии уровня, выражены через параметр τ .

Зеленая линия, определяемая выражением $\mu^2 = 1$, которое, как следует из (45), эквивалентно уравнению $\chi^2 = \Gamma^2$, разделяет пространство двух переменных Γ и χ^2 на две области. График функции $\chi^2 = \Gamma^2$, являющийся в двойном логарифмическом

Рис. 1. (В цвете онлайн) Линия уровня L = 1 функции (47) (красная линия) и линии, определяемые уравнениями $\mu^2 = 1$ и $\mu^2 = 1.618$ (зеленые линии), в пространстве двух инвариантных безразмерных переменных Γ и χ^2 . Синим цветом показаны линии, соответствующие постоянным значениям параметров $\chi^2 = 1.48 \cdot 10^{-29}$ и $\Gamma = 3.8 \cdot 10^{-6}$

масштабе прямой линией, показан на рис. 1 зеленым цветом. На рис. 1 левее и выше зеленой линии расположена область $\mu^2 > 1$, правее и ниже зеленой линии расположена область $\mu^2 < 1$. Если точки пространства двух переменных Γ и χ^2 лежат достаточно далеко от лини
и $\mu^2=1,$ то для них выполняется условие $\mu^2 \gg 1$ или $\mu^2 \ll 1$. Зеленая линия $\mu^2 = 1$ разделяет области релятивистского и нерелятивистского движения. Из формулы (47) следует, что при условиях $\mu^2 = \chi^2/\Gamma^2 \ll 1$ и L = 1 параметр Γ принимает значение $\Gamma = 3/(8\pi\alpha)$. Вертикальный участок красной линии, задаваемой в неявной форме уравнением L = 1, расположен в области, в которой выполняется условие $\mu^2 \ll 1$, и, следовательно, линия уровня L = 1 описывается в этой области уравнением $\Gamma = 3/(8\pi\alpha) \approx 16$. Наклонный участок красной линии L = 1, расположенный в области $\mu^2 = \chi^2/\Gamma^2 \gg 1$, как следует из формулы (47) и соотношения (45), описывается в этой области уравнением $\chi^2 = 3\Gamma/(4\pi\alpha)$.

Рассмотрим поведение функции $L(\Gamma, \chi^2)$ при постоянном значении χ^2 , например при $\chi^2 =$ = 1.48 · 10⁻²⁹, при котором в системе отсчета, где электрон покоился до прихода волны, интенсивность излучения составляет 6.89 BT/см². Соответствующая горизонтальная линия показа-

на на рис. 1 синим цветом. Поскольку в точках, обозначенных цифрами 1 и 6, функция (47) принимает одинаковые значения L = 1, на отрезке между этими точками должен быть хотя бы один экстремум. Вычисляя частную производную $\partial L/\partial \Gamma$ функции (47) и приравнивая ее к нулю, получим кубическое уравнение $y^3 + 2y^2 - 1 = 0$, где $y = \Gamma/\sqrt{\Gamma^2 + \chi^2}$. Одним из корней кубического уравнения, не принадлежащим интересующей нас области значений, является y = -1. Выделяя в левой части кубического уравнения множитель y+1, получим квадратное уравнение $y^2 + y - 1 = 0$, корнем которого в интересующей нас области является значение $y = (\sqrt{5} - 1)/2$. Этому значению y соответствует значение $\mu^2 = (1 + \sqrt{5})/2 \approx 1.618.$ График функции $\chi^2 = 1.618\Gamma^2$ показан на рис. 1 зеленым цветом и в данном масштабе неотличим от линии, определяемой условием $\mu^2=1.$ Точки пересечения графиков функций $\chi^2=1.618\Gamma^2$ и $\chi^2 = \Gamma^2$ с синей линией обозначены на рисунке цифрами 2 и 3 соответственно. Легко убедиться в том, что $\partial^2 L/\partial \Gamma^2 > 0$ при условиях $\chi^2 > 0$ и $\Gamma > 0$. Следовательно, при условиях $\chi^2 = {\rm const} > 0$ и $\Gamma > 0$ минимальное значение функции (47) достигается в точке пересечения линий $\chi^2 = \text{const}$ и $\chi^2 = 1.618\Gamma^2$.

Таким образом, левее точки 1, для которой $\Gamma \approx$ $\approx 4.5 \cdot 10^{-31}$, что в системе отсчета, где электрон покоился до прихода волны, соответствует огромному значению длины волны $\lambda \approx 5 \cdot 10^{18}$ м, функция (47) принимает на горизонтальной синей линии значения L > 1. На отрезке от точки 1 до точки 2 ($\Gamma \approx 3 \cdot 10^{-15}$, $\lambda \approx 800$ м) функция (47) уменьшается и принимает в точке 2 минимальное значение $L \approx 3.9 \cdot 10^{-16}$, т.е. количество энергии, равное средней энергии колебательного движения электрона в поле волны, будет излучено за время, равное 2.5 · 10¹⁵ периодам. В точке 3 ($\Gamma \approx 3.8 \cdot 10^{-15}$, $\lambda \approx 630$ м), где $\mu^2 = 1$, функция (47) имеет значение $L \approx 4 \cdot 10^{-16}$. В точке 4 $(\Gamma \approx 3.8 \cdot 10^{-6}, \lambda \approx 0.63 \text{ MKM}), \text{ где } \mu^2 = 10^{-18}, \text{ от-}$ носительные потери составляют $L \approx 2.4 \cdot 10^{-7}$.

В точке 5, где $\Gamma = 1$, классическая электродинамика уже неприменима, поскольку $\lambda = \lambda_C$. Функция (47) имеет в точке 5 значение $L \approx 0.06$, т.е. количество энергии, равное средней энергии колебательного движения электрона в поле волны, будет излучено за время равное 16 периодам. Правее точки 6, для которой $\Gamma = 3/(8\pi\alpha) \approx 16$, что в системе отсчета, где электрон покоился до прихода волны, соответствует значению длины волны $\lambda =$ $= (8\pi/3) \alpha \lambda_C = (16\pi^2/3) r_e$, функция (47) принимает на горизонтальной синей линии значения L > 1. Длина волны излучения $\lambda = (16\pi^2/3) r_e$ совпадает с граничным значением в неравенстве (18), которое получено в рамках нерелятивистского подхода, оправданного для точки *6* в силу того, что параметр μ^2 имеет в этой точке значение $\mu^2 \approx 5.6 \cdot 10^{-32}$.

Рассмотрим поведение функции $L\left(\Gamma,\chi^2\right)$ при постоянном значении Γ , например при $\Gamma \approx 3.8 \cdot 10^{-6}$, при котором в системе отсчета, где электрон покоился до прихода волны, длина волны излучения составляет $\lambda \approx 0.63$ мкм. Соответствующая вертикальная линия, проходящая через точку 4, показана на рис. 1 синим цветом. Легко убедиться том, что $\partial L/\partial (\chi^2) > 0$ при условиях $\chi^2 > 0$ и $\Gamma > 0$. Следовательно, относительные потери (47) монотонно возрастают при увеличени
и χ^2 и при условии постоянства параметра Г. Выше точки 9, расположенной на пересечении линий L = 1 и $\Gamma \approx 3.8 \cdot 10^{-6}$ (для этой точки $\chi^2 \approx 1.26 \cdot 10^{-4}$, что в системе отсчета, где электрон покоился до прихода волны, соответствует интенсивности $I \approx 5.9 \cdot 10^{25} \text{ Br/cm}^2$) функция (47) принимает на вертикальной синей линии значения L > 1, а ниже этой точки — значения L < 1.

Ниже точки 7, для которой $\chi^2 \approx 1.5 \cdot 10^{-11}$ и $I \approx 6.9 \cdot 10^{18}$ BT/см², находящейся на пересечении синей линии с зеленой линией $\chi^2 = \Gamma^2$, находится область, где выполняется условие $\mu^2 \ll 1$. Из формулы (47) следует, что при условиях $\Gamma = \text{const}$ и $\mu^2 \ll 1$ значение относительных потерь L почти не меняется и примерно равно значению L в точке 4. Выше точки 8, для которой $\chi^2 \approx 2.4 \cdot 10^{-11}$ и $I \approx \approx 1.1 \cdot 10^{19}$ BT/см², находящейся на пересечении синей линии с линией $\chi^2 = 1.618\Gamma^2$, находится область, где выполняется условие $\mu^2 \gg 1$.

Из приведенного выше анализа поведения функции $L(\Gamma, \chi^2)$ при постоянном значении Γ и при постоянном значении χ^2 следует, что внутри области, ограниченной красной линией, относительные потери на излучение малы, $L(\Gamma, \chi^2) < 1$, а вне этой области и на ее границе приближение, предполагающее малое влияние торможения излучением на движение классического электрона в поле монохроматической плоской волны, неприменимо, $L(\Gamma, \chi^2) \ge 1$.

Как было отмечено выше, при условии $\mu^2 \gg 1$ из формулы (47) и соотношения (45) следует, что граница L = 1 описывается в этой области уравнением $\chi^2 = 3\Gamma/(4\pi\alpha)$. В системе отсчета, в которой электрон покоился до прихода волны, уравнение границы $\chi^2 = 3\Gamma/(4\pi\alpha)$ в рассматриваемой области $\mu^2 \gg 1$ определяется формулой

$$I = I^{cr} \frac{3}{4\pi\alpha} \frac{\hbar\omega}{m_e c^2} = \frac{3}{16\pi^2} \frac{m_e c^2}{r_e^2} \,\omega, \qquad (48)$$

получаемой в результате подстановки соотношений $\Gamma=\hbar\omega/\left(m_{e}c^{2}\right)$ и $\chi^{2}=I/I^{cr},$ выполняющихся в рассматриваемой системе отсчета, в уравнение границы $\chi^{2}=3\Gamma/\left(4\pi\alpha\right).$

В рамках используемого в настоящей работе подхода проводится сравнение значений излучаемой за время периода энергии с энергией колебательного движения электрона. Во Введении было отмечено, что для нахождения условий применимости приближения, предполагающего малое влияние торможения излучением на движение классического электрона, используется сравнение значений модулей силы радиационного трения и силы, действующей на электрон со стороны внешнего электромагнитного поля. Выполним такое сравнение для случая релятивистского движения $\mu^2 \gg 1$ электрона в поле монохроматической плоской волны круговой поляризации, когда используемые формулы принимают наиболее простой вид. В релятивистском уравнении, учитывающем силу радиационного трения,

$$m_e c \, \frac{d\mathbf{u}}{dt} = \mathbf{f}^{ext} + \mathbf{f}^{rad},\tag{49}$$

найдем абсолютные значения векторов $|\mathbf{f}^{rad}|$ и $|\mathbf{f}^{ext}|$ в системе отсчета, в которой электрон в среднем покоится.

В отсутствие сил радиационного трения уравнение (49) имеет вид

$$m_e \frac{d}{dt} \left(\frac{\mathbf{v}}{\sqrt{1 - v^2/c^2}} \right) = -e \left(\mathbf{E} + \left[\frac{\mathbf{v}}{c} \times \mathbf{B} \right] \right),$$

где **E** и **B** — векторы напряженности электромагнитного поля. В системе отсчета, в которой дрейфовая скорость равна нулю, электрон в волне круговой поляризации движется по окружности в плоскости, перпендикулярной направлению распространения волны, с постоянной угловой скоростью. Поскольку значение v^2 постоянно, в результате скалярного умножения предыдущего уравнения на **v** получим $\mathbf{v} \cdot \mathbf{E} = 0$. Кроме того в монохроматической плоской волне $\mathbf{E} \cdot \mathbf{B} = 0$, а векторы **E**, **B** и **v** лежат в одной плоскости, откуда следует, что $[\mathbf{v} \times \mathbf{B}] = 0$. Модуль вектора силы Лоренца $|\mathbf{f}^{ext}| = e |\mathbf{E}| = \omega m_e c |\mu|$ будем сравнивать с $|\mathbf{f}^{rad}|$.

Используя принятые здесь обозначения, запишем трехмерное векторное выражении для силы радиационного трения (уравнение (9) в [2]):

$$\begin{split} \mathbf{f}^{rad} &= \frac{2e^2}{3c^3} u_4^2 \left\{ \frac{d\mathbf{a}}{dt} + \frac{3u_4^2}{c^2} \left(\mathbf{v} \cdot \mathbf{a} \right) \mathbf{a} + \right. \\ &+ \frac{u_4^2}{c^2} \left(\mathbf{v} \cdot \frac{d\mathbf{a}}{dt} \right) \mathbf{v} + \frac{3u_4^4}{c^4} \left(\mathbf{v} \cdot \mathbf{a} \right) \mathbf{v} \right\}. \end{split}$$

В системе отсчета, в которой дрейфовая скорость равна нулю, электрон движется по окружности с постоянной угловой скоростью, модуль которой равен частоте волны в рассматриваемой системе отсчета. При этих условиях векторы **v** и **a** перпендикулярны, а вектор $d\mathbf{a}/dt$ выражается формулой $d\mathbf{a}/dt = -\omega^2 \mathbf{v}$. Тогда для модуля силы радиационного трения получим выражение

$$\left|\mathbf{f}^{rad}\right| = \frac{2e^2}{3c^2}\,\omega^2 u_4^3 \sqrt{u_4^2 - 1}.$$

Поскольку в рассматриваемых условиях величина u_4 постоянна, ее мгновенное значение совпадает с усредненным, $u_4 = \langle U_4 \rangle_{\Phi}$. Из (34) следует, что $\langle U_4 \rangle_{\Phi} = \sqrt{1 + \mu^2}$ при условии $\overline{U}_4 = 1$. Тогда

$$\left|\mathbf{f}^{rad}\right| = \frac{2e^2}{3c^2} \, \omega^2 \left(\sqrt{1+\mu^2}\right)^3 |\mu| \, . \label{eq:frad}$$

В релятивистском случае $\mu^2 \gg 1$ граница, на которой реализуется условие $|{\bf f}^{ext}|=\left|{\bf f}^{rad}\right|,$ определяется соотношением

$$|\mu|^{3} = \frac{3}{2} \frac{c}{r_{e} \omega} = \frac{3}{4\pi} \frac{\lambda}{r_{e}}.$$
 (50)

Аналогичное условие (уравнение (2) в [4]) было получено в работе [4]. Поскольку параметр μ^2 согласно определению (23) пропорционален величине I/ω^2 , для уравнения границы в релятивистском случае получим зависимость $I \propto \omega^{4/3}$, отличающуюся от зависимости $I \propto \omega$, описывающей уравнение границы согласно формуле (48).

Кажущееся качественное различие полученных двумя разными способами зависимостей, описывающих уравнение границы в релятивистском случае, обусловлено тем обстоятельством, что уравнение (48) получено в системе отсчета, в которой электрон покоился до прихода волны, а уравнение (50) в системе отсчета, в которой электрон в среднем покоится. В силу наличия ненулевой дрейфовой скорости в системе отсчета, в которой электрон покоился до прихода волны [5,7,8,13,14], эта система отсчета не совпадает с системой отсчета, в которой электрон в среднем покоится. Поскольку эти системы отсчета не совпадают, в них, в частности, не совпадают значения частоты падающей волны.

Будем далее обозначать одним штрихом величины, относящиеся к системе отсчета, в которой электрон покоился до прихода волны, а двумя штрихами — величины, относящиеся к системе отсчета, в которой электрон в среднем покоится. Для системы отсчета, в которой электрон в среднем покоится, $\overline{U}''_{\alpha} = 0$ и $\overline{U}''_{4} = 1$, формула (36) имеет вид

$$(K_n''U_n'') = \sqrt{1 + \mu^2}K_4''.$$

Инвариантное скалярное произведение $(K_n U_n)$ имеет одинаковое значение во всех инерциальных системах отсчета:

$$(K''_m U''_m) = (K'_n U'_n) \,.$$

В системе отсчета, в которой электрон покоился до прихода волны, компоненты 4-вектора скорости до прихода волны имели значения $U'_{\alpha} = 0$ и $U'_4 = 1$. Следовательно, сохраняющаяся при движении электрона в поле монохроматической плоской волны величина $(K_n U_n)$ имеет значение

$$(K'_n U'_n) = K'_4.$$

Из предыдущих формул и определения $K_4 = \omega/c$ следует, что значения частоты падающей волны в рассматриваемых системах отсчета связаны соотношением

$$\omega' = \sqrt{1 + \mu^2} \, \omega''. \tag{51}$$

Уравнение (50) получено в системе отсчета, в которой электрон в среднем покоится:

$$\left|\mu\right|^{3} = \frac{3}{2} \, \frac{c}{r_{e} \, \omega^{\prime \prime}}$$

С учетом связи (51), которая для релятивистской области $\mu^2 \gg 1$ имеет вид $\omega' = |\mu| \, \omega'',$ получим уравнение

$$\mu^2 = \frac{3}{2} \frac{c}{r_e \,\omega'}$$

демонстрирующее качественное согласие с формулой (50). Действительно, согласно определению (23) параметр $\mu^2 \propto I'/{\omega'}^2$, поэтому для уравнения границы в рассматриваемой системе отсчета в релятивистском случае получаем зависимость $I' \propto \omega'$, аналогичную (48).

Для случая нерелятивистского движения условие применимости приближения, предполагающего малое влияние торможения излучением на движение классического электрона в поле монохроматической плоской волны, полученное в результате сравнения действующих на электрон сил, определяется неравенствами (9). Условия (9), так же как и уравнение границы (50), получены в системе отсчета, в которой электрон в среднем покоится. Эта система отсчета не совпадает с системой отсчета, в которой электрон покоился до прихода волны, но в нерелятивистском случае $\mu^2 \ll 1$, как следует из (51), можно

Рис. 2. (В цвете онлайн) Граница (красная линия), разделяющая области малых и больших потерь на излучение, в пространстве переменных χ^2 (левая шкала) и Γ (нижняя шкала) в любой инерциальной системе отсчета и в пространстве переменных I' (правая шкала) и λ' (верхняя шкала) в системе отсчета, в которой электрон покоился до прихода волны. Добавлены шкалы, соответствующие энер-

гии кванта излучения $\hbar\omega'=h\nu'$ и частоте волны ν'

пренебречь различием частот ω' и ω'' . Таким образом, как для нерелятивистской области $\mu^2 \ll 1$, так и для для релятивистской области $\mu^2 \gg 1$, имеется качественное согласие между полученными двумя разными способами (сравнением действующих на электрон сил и сравнением излучаемой энергии со средней энергией колебательного движения) результатами, описывающими границу применимости приближения.

На рис. 2 показана граница (красная линия) применимости приближения, предполагающего малое влияние торможения излучением на движение классического электрона в поле монохроматической плоской волны в пространстве переменных χ^2 (левая шкала) и Г (нижняя шкала) в любой инерциальной системе отсчета. Значениям безразмерных инвариантных параметров χ^2 (левая шкала) и Γ (нижняя шкала) в системе отсчета, в которой электрон покоился до прихода волны, соответствуют интенсивность излучения (правая шкала), вычисляемая по формуле $I' = \chi^2 I^{cr}$, и длина волны (верхняя шкала), вычисляемая по формуле $\lambda' = \lambda_C / \Gamma$. Зеленая линия $\mu^2 = 1$ разделяет области релятивистского и нерелятивистского движения в любой инерциальной системе отсчета, в том числе и в той, в которой электрон покоился до прихода волны.

Условия применимости приближения...

Горизонтальной синей линией на рис. 2 обозначена критическая интенсивность излучения $I' = I^{cr}$ (46). Вертикальной синей линией на рис. 2 обозначена длина волны излучения $\lambda' = \lambda_C$ (10), которая соответствует энергии кванта излучения $\hbar\omega' = m_ec^2$.

В [5] показано, что сечение рассеяния монохроматической плоской волны произвольной поляризации (линейной, круговой или эллиптической) на классическом электроне в произвольной инерциальной системе отсчета выражается формулами (16) и (18) в [5], учитывающими релятивистские эффекты и наличие дрейфовой скорости электрона в поле монохроматической плоской волны. В системе отсчета, в которой электрон покоился до прихода волны, сечение рассеяния определяется (уравнение (20) в [5]) выражением

$$\frac{\mathcal{P}'}{I'} = \sigma_0 \, \frac{1 + \mu^2 \left(1 - (\gamma/2) \cos \left(2\varphi_0 + \delta \right) - (\gamma/2)^2 \right)}{1 + \mu^2 \left(1 - (\gamma/2) \cos \left(2\varphi_0 + \delta \right) \right)}, \tag{52}$$

где $\sigma_0 = (8\pi/3) r_e^2$ — томсоновское сечение. Содержащаяся в (52) полная фаза $\varphi_0 + \delta/2$, т.е. сумма начальной фазы $\delta/2$ и фазы φ_0 , определяет значения полевых величин на переднем фронте волны.

Формулы (16) и (18) в [5] и выражение (52) получены в рамках приближения, предполагающего малое влияние сил радиационного трения на движение электрона в поле монохроматической плоской волны. Как показано в настоящей работе, это приближение применимо внутри области $L(\lambda', I') \ll 1$, которая ограничена на рис. 2 красной линией, и в этой области применимо соотношение (52). При малых значениях $\mu^2 \ll 1$, т. е. в области, расположенной на рис. 2 правее и ниже зеленой линии $\mu^2 = 1$, разделяющей релятивистский и нерелятивистский случаи, как следует из (52), сечение равно томсоновскому: $\mathcal{P}'/I' \approx \sigma_0$. В релятивистском случае $\mu^2 \gg 1$, т.е. в области, расположенной на рис. 2 левее и выше зеленой линии, сечение выражается формулой

$$\frac{\mathcal{P}'}{I'} \approx \sigma_0 \left(1 - \frac{\left(\gamma/2\right)^2}{1 - \left(\gamma/2\right)\cos\left(2\varphi_0 + \delta\right)} \right),\,$$

в правой части которой не содержится параметр μ^2 , т. е. сечение не зависит от частоты падающей волны и ее интенсивности. В случае круговой поляризации $\gamma = 0$ падающей волны сечение рассеяния равно томсоновскому сечению, $\mathcal{P}'/I' = \sigma_0$, в области применимости приближения, предполагающего малое влияние сил радиационного трения на движение электрона в поле волны.

2 ЖЭТФ, вып. 1

7. ЗАКЛЮЧЕНИЕ

С целью нахождения пределов применимости приближения, предполагающего малое влияние сил радиационного трения на движение классического электрона в поле монохроматической плоской волны произвольной поляризации (линейной, круговой или эллиптической), полная энергия, излучаемая ускоренно движущимся в поле волны электроном за время равное периоду, сравнивается со средней энергией колебательного движения электрона. Показано, что отношение излучаемой энергии к средней энергии колебательного движения может быть представлено в виде формулы (40), в правой части которой содержатся как инвариантные величины, так и отношение двух неинвариантных величин κ_1/κ_2 . Показано, что значение неинвариантной величины κ_1/κ_2 в любом возможном случае не сильно отличается от единицы. Полученная в результате пренебрежения неинвариантным коэффициентом κ_1/κ_2 формула (42) демонстрирует зависимость отношения L излучаемой энергии к средней энергии колебательного движения только от двух безразмерных инвариантных параметров $L(\mu^2, \Gamma_{cl})$. Формула (42) преобразована к виду (47), где величина L зависит от двух других безразмерных инвариантных параметров $L(\chi^2, \Gamma)$. Такое представление более удобно для анализа, поскольку в системе отсчета, в которой электрон покоился до прихода волны, один из этих параметров пропорционален частоте падающей волны, $\Gamma \propto \omega'$, а другой — ее интенсивности, $\chi^2 \propto I'$.

В пространстве двух инвариантных безразмерных переменных Г и χ^2 построена линия уровня $L(\Gamma, \chi^2) = 1$ функции (47), которая интерпретируется как граница применимости приближения, предполагающего малое влияние торможения излучением на движение классического электрона в поле монохроматической плоской волны. Области релятивистского и нерелятивистского движения в пространстве двух переменных Г и χ^2 разделены линией, описываемой уравнением $\chi^2 = \Gamma^2$. Та часть границы $L(\Gamma, \chi^2) = 1$, которая расположена в релятивистской области $\chi^2 \gg \Gamma^2$, описывается в этой области уравнением $\chi^2 = 3\Gamma/(4\pi\alpha)$. Та часть границы $L(\Gamma, \chi^2) = 1$, которая расположена в нерелятивистской области $\chi^2 \ll \Gamma^2$, описывается в этой области уравнением $\Gamma = 3/(8\pi\alpha) \approx 16$.

Показано, что результаты анализа применимости приближения, предполагающего малое влияние торможения излучением на движение классического электрона в поле монохроматической плоской волны, полученные путем сравнения действующих на электрон сил, качественно согласуются с результатами анализа применимости приближения, полученными путем сравнения полной энергии, излучаемой ускоренно движущимся в поле волны электроном за время равное периоду, со средней энергией колебательного движения электрона. Для согласования полученных двумя разными способами результатов необходимо учитывать, что система отсчета, в которой электрон в среднем покоится, не совпадает с системой отсчета, в которой электрон покоился до прихода волны, и, следовательно, частота и интенсивность падающей волны в этих системах отсчета имеют разные значения. В нерелятивистском случае этим различием можно пренебречь, а в области релятивистского движения эти различия значительны.

Полученные в настоящей работе результаты применимы к наиболее общей постановке модельной задачи о взаимодействии монохроматической плоской волны с классическим точечным электроном, движущимся под действием поля волны как с нерелятивистской, так и с релятивистской скоростью. Общая постановка задачи включает в себя случаи любой поляризации монохроматической плоской волны: линейной, круговой или эллиптической. Кроме того, полученные результаты, выражаемые в общем случае через безразмерные инвариантные параметры, применимы к анализу задачи в произвольной инерциальной системе отсчета, в том числе и в системе отсчета, в которой электрон покоился до прихода волны. Выполненный в настоящей работе анализ применимости рассматриваемого приближения относится к любым величинам, вычисляемым в рамках модельной задачи о взаимодействии монохроматической плоской волны с классическим электроном, в том числе к результатам вычисления сечения рассеяния, полученным в работе [5].

ЛИТЕРАТУРА

- Л. Д. Ландау, Е. М. Лифшиц, Теория поля, Физматлит, Москва (2003).
- 2. В. Л. Гинзбург, УФН 98, 569 (1969).
- **3**. Н. П. Клепиков, УФН **146**, 317 (1985).
- С. В. Буланов, Т. Ж. Есиркепов, Дж. Кога, Т. Таджима, Физика плазмы 30, 221 (2004).
- А. В. Пересторонин, Письма в ЖЭТФ 105, 367 (2017).
- 6. А. В. Пересторонин, Препринт ФИАН № 11 (2016).

- С. Н. Андреев, В. П. Макаров, А. А. Рухадзе, КЭ 39, 68 (2009).
- E. S. Sarachik and G. T. Schappert, Phys. Rev. D 1, 2738 (1970).
- **9**. В. И. Ритус, Труды ФИАН **111**, 5 (1979).
- 10. W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936).

- **11**. В. С. Попов, В. Д. Мур, Н. Б. Нарожный, С. В. Попруженко, ЖЭТФ **149**, 623 (2016).
- 12. Н. Б. Нарожный, С. С. Буланов, В. Д. Мур,
 В. С. Попов, Письма в ЖЭТФ 80, 434 (2004).
- **13**. Б. М. Болотовский, А. В. Серов, УФН **164**, 545 (1994).
- **14**. Б. М. Болотовский, А. В. Серов, УФН **119**, 667 (2003).