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We are honored to dedicate this article to Emmanuel Rashba on the occasion of his 95 birthday. In the ideal

disorder-free situation, a two-dimensional band gap insulator has an activation energy for conductivity equal

to half the band gap, ∆. But transport experiments usually exhibit a much smaller activation energy at low

temperature, and the relation between this activation energy and ∆ is unclear. Here we consider the tempera-

ture-dependent conductivity of a two-dimensional narrow gap semiconductor on a substrate containing Coulomb

impurities, mostly focusing on the case when amplitude of the random potential Γ ≫ ∆. We show that the

conductivity generically exhibits three regimes and only the highest temperature regime exhibits an activation

energy that reflects the band gap. At lower temperatures, the conduction proceeds through nearest-neighbor or

variable-range hopping between electron and hole puddles created by the disorder. We show that the activation

energy and characteristic temperature associated with these processes steeply collapse near a critical impurity

concentration. Larger concentrations lead to an exponentially small activation energy and exponentially long

localization length, which in mesoscopic samples can appear as a disorder-induced insulator-to-metal transition.

We arrive at a similar disorder driven steep insulator–metal transition in thin films of three-dimensional topolog-

ical insulators with very large dielectric constant, where due to confinement of electric field internal Coulomb

impurities create larger disorder potential. Away from neutrality point this unconventional insulator-to-metal

transition is augmented by conventional metal–insulator transition at small impurity concentrations, so that we

arrive at disorder-driven re-entrant metal–insulator–metal transition. We also apply this theory to three-dimen-

sional narrow gap Dirac materials.
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1. INTRODUCTION

In a band gap insulator, charged impurities often
play a decisive role in determining the properties of
the insulating state. Due to the long-ranged nature of
the Coulomb potential that they create, such impurities
produce large band bending that changes qualitatively
the nature of electron conduction relative to the ideal

* E-mail: huan1756@umn.edu

disorder-free situation. An illustrative case is that of
a three-dimensional completely-compensated semicon-
ductor, for which positively-charged donors and nega-
tively-charged acceptors are equally abundant and ran-
domly distributed in space. In this case, the impu-
rity potential has large random fluctuations, which can
be screened only when the amplitude of this potential
reaches ∆, where 2∆ is the band gap. This screening is
produced by sparse electron and hole droplets, concen-
trated in spatially alternating electron and hole clouds
(puddles) [1–3] (see Fig. 1). At high enough tempera-
tures the electrical conductivity is due to activation of
electrons and holes from the Fermi level to the energy
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associated with classical percolation across the sam-
ple. At lower temperatures the conductivity is due to
hopping between nearest neighbor puddles (NNH). At
even smaller temperatures it is due to variable range
hopping (VRH) between puddles. Crucially, in each of
these temperature regimes the naive relation Ea = ∆

is lost, where Ea is the activation energy for conductiv-
ity. Only in the highest temperature regime is there a
direct proportionality between Ea and ∆ (with a non-
trivial small numeric prefactor) [3,4]; at lower temper-
atures the observed activation energy is non-universal
and disorder-dependent [1, 2].

Fig. 1. Schematic energy diagram of a completely compen-

sated semiconductor with relatively weak disorder. The wavy

lines show the conduction band bottom and the valence band

ceiling separated by the gap 2∆. Droplets of holes are shaded

by red, while electron droplets are shaded by blue. Here R

is the size of a droplet, and Λ is the size of a droplet cloud

(puddle), which contains several droplets

In this paper we consider a similar problem in
two dimensions. Specifically, we consider a two-di-
mensional small band gap semiconductor resting on a
thick substrate with a three-dimensional concentration
of randomly-positioned impurities and focus on the case
when Γ ≫ ∆ (see Fig. 2). We derive the temperature
dependence of the electrical conductivity across all tem-
perature regimes and show that the observed activation
energy of the conductivity can be very small.

Understanding the relation between the energy gap
and the observed activation energy for transport is
of crucial importance for studying a variety of new
2D electron systems. For example, recent studies
of 2D topological insulators (TIs) [5–7], films of 3D
TIs [8–24], bilayer graphene (BLG) with an orthogo-
nal electric field [25, 26] and twisted bilayer graphene
(TBG) [27–31] use the transport activation energy as
a way of characterizing small energy gaps. In all these
cases the observed activation energy is much smaller

Fig. 2. Schematic picture of a cross section of puddles for the

case of strong disorder, Γ ≫ ∆. The wavy lines show the con-

duction band bottom and the valence band ceiling separated

by the gap 2∆. The red shaded region above the Fermi level

EF = 0 represents a hole puddle, while the blue shaded region

below EF represents an electron puddle. Γ is the amplitude of

the disorder potential, λ is the screening length, and w is the

width of the barrier between neighboring puddles

than the energy gap that is expected theoretically or
measured through local probes like optical absorption
or scanning tunneling microscopy.

Here, we show that there is indeed no simple pro-
portionality between the energy gap and the activa-
tion energy except at the highest temperature regime,
which is likely irrelevant for many experimental con-
texts. Instead, we find a wide regime of tempera-
ture and disorder strength for which the activation en-
ergy is dramatically smaller than the energy gap. At
the lowest temperatures the conductivity follows the
Efros – Shklovskii (ES) law rather than an Arrhenius
law, and this dependence can give the appearance of a
small activation energy.

Let us dwell on two likely applications of our the-
ory. First, our results may be especially relevant for
ongoing efforts to understand the energy gaps arising
in TBG at certain commensurate fillings of the moiré
superlattice [27–31]. Such gaps apparently arise from
electron–electron interactions, but the observed acti-
vation energies of the maximally insulating state are
typically an order of magnitude smaller than the naive
interaction scale (see, e.g., Refs. [28,29]), and they vary
significantly from one sample to another. Scanning tun-
neling microscopy studies also suggest a gap on the or-
der of ten times larger than the observed activation
energy [32, 33]. The theory we present here offers a
natural way to interpret this discrepancy.

Second, our theory can be applied to the huge body
of experimental work on thin films of 3D TI, where the
surface electrons have a small gap 2∆ due to hybridiza-
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tion of the surface states of two surfaces [8,9], or due to
intentionally introduced magnetic impurities [10–24].
Understanding the origin of the small apparent activa-
tion energy Ea ≪ ∆ is crucial for achieving metro-
logical precision of the quantum anomalous Hall ef-
fect [11,13,16,19–24,34–36] and the quantum spin Hall
effect [9, 37–39].

The model we consider is a two-dimensional semi-
conductor with band gap 2∆ atop a substrate with
a three-dimensional concentration N of random sign
charged impurities. We assume that the semiconduc-
tor has a gapped Dirac dispersion law

ǫ2(k) = (~vk)2 +∆2. (1)

We are mostly interested in the case when the ampli-
tude Γ of spatial fluctuations of the random potential
satisfies Γ ≫ ∆, so that electron and hole puddles
occupy almost half of the space each and are sepa-
rated by a small insulating gap which occupies only
a small fraction of the space (see Fig. 2). This sys-
tem is an insulator because in 2D neither electron nor
hole puddles percolate, and they are disconnected from
each other. Throughout this paper we mostly focus on
the case of zero chemical potential, for which electron
and hole puddles are equally abundant and the system
achieves its maximally insulating state. We argue that
this situation is likely realized in the experiments of
Refs. [5–33].

The remainder of this paper is organized as follows.
In the following section we first summarize our main re-
sults for the temperature-dependent conductivity. Sec-
tions 3 and 4 concentrate on the case Γ ≫ ∆ illustrated
by Fig. 2. In Sec. 3 we start from reviewing the frac-
tal geometry of two-dimensional puddles and then cal-
culate the action accumulated by electrons tunneling
across the gap between two neighboring fractal metal-
lic puddles, the corresponding localization length, and
the critical value of the ratio Γ/∆, at which crossover
to weak localization takes place. In Sec. 4 we calculate
the hopping conductivity for the case Γ ≫ ∆.

In Sec. 5 we study the illustrated by Fig. 1 case
where the impurity concentration N is lower and
present the parameters of NNH and VRH as functions
of N . Section 6 studies what happens when the Fermi
level moves away from the neutrality point. We arrive
at the “phase diagram” of the re-entrant metal–insula-
tor–metal (MIM) transition. Section 7 deals with the
generalization of our results to thin TI films. Because of
large interest to such films [8–10,12–24,34–49], in this
section we add a fair amount of numerical estimates. In
Sec. 8 we briefly return to the problem of three-dimen-
sional, completely-compensated semiconductors with a

gapped Dirac dispersion, and extend the previous the-
ory [1–3] to the case when disorder potential fluctua-
tions exceed ∆. We again arrive at a re-entrant MIM
transition away from the neutrality point. We close in
Sec. 9 with a summary and conclusion. Some results of
this paper are published in its shorter version [50].

The results from the list of Refs. [1–85] are used
or/and discussed in our work. The figures illustrating
our results are presented below.

2. SUMMARY AND CONCLUSION

In this paper we have considered the tempera-
ture-dependent conductivity of a two-dimensional in-
sulator subjected to disorder by Coulomb impurities
in the substrate. Our primary results can be summa-
rized as follows. When the impurity concentration N

is below a certain value N0 (see Eq. (6)), the ran-
dom potential of charged impurities necessarily pro-
duces large band bending, which the amplitude Γ be-
comes much larger than ∆. Then the system can
be described as a network of large and closely-spaced
fractal puddles (Fig. 2) separated by narrow insulat-
ing barriers (Fig. 5). This disorder landscape implies
low-energy pathways for electron conduction, leads to
the “three-mechanism sequence” illustrated in Fig. 3.
The high temperature regime with Ea = ∆ is rele-
gated to only such high temperatures that T is compa-
rable to ∆. The second regime, the nearest neighbor
hopping between puddles (NNH), exhibits a paramet-
rically smaller activation energy, whose value depends
on the impurity concentration. At the lowest temper-
atures the conductivity is due to the Efros – Shklovskii
variable range hopping (VRH), which may appear as
an even smaller activation energy when measured over
a limited temperature range. Experiments are instead
more likely to observe NNH or ES VRH, with an activa-
tion energy that declines very rapidly with increasing N

(Fig. 4).

When the impurity concentration N exceeds an-
other critical value Nc the tunnel barriers between pud-
dles become thin enough to be nearly transparent, and
electrons are delocalized across many puddles. In this
limit the conductivity follows ES law with the localiza-
tion length growing exponentially with increased dis-
order. The corresponding apparent activation energy
falls exponentially, so that in mesoscopic samples one
effectively has an unconventional disorder-induced in-
sulator-to-metal transition (IMT). The analogous prob-
lem for three-dimensional insulators (see Sec. 8) shows
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Fig. 3. Logarithm of the dimensionless conductivity σ/(e2/~)

as a function of the inverse temperature T−1 in the case

1 ≪ Γ/∆ ≪ (Γ/∆)c. At high temperature T > T1, the

conductivity has activation energy ∆. At intermediate temper-

ature T2 < T < T1, the conductivity is dominated by NNH.

At low temperatures T < T2, NNH is replaced by ES VRH.

Numbers adjacent to different parts of the line show corre-

sponding equations. Temperatures T1 and T2 are given by

Eqs. (9) and (10)

Fig. 4. Schematic log-log plots of characteristic energies of

three kinds of hopping conductivity. The characteristic tem-

perature of ES law TES (blue line), the activation energy of

NNH, EC (black solid line) and the characteristic temperature

of hybrid conductivity TH (red line) are shown as functions of

the dimensionless impurity concentration N/N0 = (Γ/∆)3.

The left part of the plot where N/N0 < 1 corresponds

to Eqs. (41) and (12), while the right part at N/N0 > 1

corresponds to Eqs. (8) and (4). In the horizontal axis

N/N0 = Nc/N0 = α−27/41 corresponds to Γ/∆ = (Γ/∆)c
given by Eq. (28). At this point TES = α87/41∆. When

Γ/∆ > (Γ/∆)c the localization length ξ increases exponen-

tially and TES decreases exponentially

a genuine IMT due to percolation of electron and hole
puddles separately.

Fig. 5. Schematic picture of interlocked “fingers” of neighbor-

ing puddles. Here the length of “fingers” a is of order of the

puddle diameter. One can imagine that Fig. 2 shows a vertical

cross section of Fig. 5

Above we were talking about the neutrality point.
When the Fermi level is away from neutrality point
and the concentration of impurities is relatively small,
there is a conventional metal–insulator transition with
increasing disorder. Combining it with IMT at large
impurity concentrations away from neutrality we arrive
at a disorder driven re-entrant MIM transition. (See
phase diagrams of such transitions shown in Fig. 7 and
Fig. 9.)

Fig. 6. Schematic map of nearest neighbor electron and hole

puddles containing many electron (blue) and hole (red) pud-

dles. The continuous lines are equipotential contours of the

electron energy. As in geographical maps the direction of de-

scent is indicated by a short stroke. The smallest contours rep-

resent boundaries of droplets at the chemical potential. The

dashed arrow shows the shortest hop between the two puddles.

At T ≪ T ′

1 electron searches in dashed circles of radius R for

droplets 3 and 4 with closer to the chemical potential energies,

which provide a smaller inter-puddle hop resistance

Our results have implications for a wide variety
of experiments on 2D electron systems with a nar-
row energy gap. Some of these include 2D and thin
3D TIs, Bernal bilayer graphene with a perpendicu-
lar displacement field, and twisted bilayer graphene, as
mentioned in the Introduction. In such systems the
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Fig. 7. Schematic n–N phase diagram in a two-dimensional

semiconductor. The shaded blue domain is the insulator phase

while the white domain is the almost metal phase. On the

left (small N) side of the diagram the phase boundary fol-

lows Eq. (43) (dashed line) and reaches the maximum near

Na3

B = N0a
3

B = α−4. On the right side the maximum of the

phase boundary is determined by criterion G(n,N) = 1 for

tunneling between electron puddles. When with decreasing n

this tunneling rate yields to the tunneling between electron and

hole puddles, the boundary becomes vertical, i. e., sticks to the

critical point Na3

B = Nca
3

B = α−191/41 all the way till n = 0

(cf. Eq. (28)). We use α = 0.12 for this plot

Fig. 8. Illustration of the competition of the two tunneling

rates for a chessboard potential. Blue and red domains are the

electron and hole puddles separated by insulating gap (white).

a) At the neutrality point, n = 0, EF = 0, the shortest tun-

neling distance between electron puddles W is much larger

than the distance w between electron and hole puddles. b) At

EF > 0 and growing n, W decreases. Eventually it becomes

smaller than w and vanishes at the percolation transition where

all electron puddles merge into the infinite cluster

temperature-dependent conductivity is often used as
a primary way to diagnose the magnitude of energy
gaps. Our results here suggest that such studies suffer

Fig. 9. Schematic n3–N plane phase diagram of a 3D nar-

row gap strongly compensated semiconductor. The shaded

blue domain is the insulator phase while the white domain

is the metal phase. The phase boundary follows Eq. (65)

on the left side, reaches the maximum n3a
3

B = α−3 near

Na3

B = N1a
3

B = α−9/2, and then vertically drops at

N = Nc = 1.15N1

an essentially unavoidable limitation, since the appar-
ent activation energy Ea at low temperature has no
simple relation to the energy gap, and in general Ea

can be taken only as a weak lower bound. No won-
der that the transport activation energy in many cases
is 10–100 times smaller than the value expected theo-
retically or measured by probes like optical absorption
or tunneling spectroscopy. In this paper we studied in
details gapped thin films of 3D topological insulators,
which due to the large dielectric constant have peculiar
3D-like electrostatics (see Sec. 7).

The existence of an apparent disorder-induced IMT
in strongly compensated semiconductor is an especially
striking result of our analysis. For conventional insula-
tors, this apparent transition cannot be called a true
IMT, since in 2D the zero-temperature conductance
flows toward zero in the thermodynamic limit for any
finite amount of disorder [83]. However, the situation
may be different for thin TI films, since the spin-or-
bit coupling of the TI surface states permits a stable
metallic phase [84,85]. A full theory of this IMT in TI
films is beyond the scope of our current analysis.

Finally, we mention that the tunneling between
puddles can be reduced by applying a magnetic field
orthogonal to the 2D plane. This reduction leads to an
exponential positive magnetoresistance in the insulat-
ing phase, similar to the one studied in Ref. [2]. The
theory of such magnetoresistance is also beyond the
scope of this paper.
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