ГЕНЕРАЦИЯ ВИХРЕЙ В БИСЛОЕ СВЕРХПРОВОДНИК / ФЕРРОМАГНЕТИК С НЕОДНОРОДНЫМ ОБМЕННЫМ ПОЛЕМ

А. В. Самохвалов*

Институт физики микроструктур Российской академии наук 603950, Нижний Новгород, Россия

Нижегородский госуниверситет им.Н.И. Лобачевского 603950, Нижний Новгород, Россия

> Поступила в редакцию 31 марта 2022 г., после переработки 1 июля 2022 г. Принята к публикации 19 июля 2022 г.

В лондоновском приближении изучены свойства гибридной структуры с эффектом близости, состоящей из диска ферромагнитного изолятора (ФИ), лежащего на поверхности тонкой пленки сверхпроводника *s*-типа, на границе которой с ферромагнетиком заметную роль играет спин-орбитальное (CO) взаимодействие Рашба. Совместное действие спинового расщепления и CO-взаимодействия приводит к генерации спонтанного сверхтока и индуцирует в пленке вихри Пирла, располагающиеся по периметру диска. Выполнены расчеты распределения сверхтока в пленке и структуры создаваемого им магнитного поля для ФИ-дисков с радиусом порядка эффективной глубины проникновения поля в сверхпроводник Λ , когда становятся существенными эффекты экранировки. Изучена структура вихревого состояния из нескольких пар вихрь-антивихрь и найдены условия переключения между различными вихревыми конфигурациями. Показана возможность полной компенсации спонтанного сверхтока, создаваемого CO-взаимодействием и обменным полем, циркулирующими токами плотной цепочки вихрей на границе диска.

DOI: 10.31857/S0044451022120148 **EDN:** LECAUX

1. ВВЕДЕНИЕ

Прогресс последних лет в области нанотехнологии сопровождается расширением класса гибридных систем сверхпроводник-ферромагнетик (СФ) с эффектом близости [1], магнитные и транспортные свойства которых определяются конкуренцией ферромагнитного (Ф) и сверхпроводящего (С) типов спинового упорядочения [2] (подробнее см. обзоры [3-9]). Существенное влияние на поведение сверхпроводящих корреляций в СФ-структурах оказывают спин-орбитальные (СО) эффекты, когда импульс электрона р оказывается связанным со спином σ [10]. Для широкого класса сверхпроводящих структур с планарной геометрией подобные эффекты возникают из-за СО-взаимодействия Рашба $(\alpha_R/\hbar) [\mathbf{n} \times \mathbf{p}] \cdot \boldsymbol{\sigma}$, возникающего на интерфейсах таких структур [11–13] ($\alpha_R = \hbar v_R$ — константа СО-связи, зависящая от скорости Рашба v_R [14]). Здесь п — это единичный вектор вдоль направления, в котором нарушена симметрия относительно пространственной инверсии [15]. Спин-орбитальные эффекты могут привести к формированию сверхпроводящих корреляций с киральным *р*-типом спаривания, увеличить и сделать анизотропным поле парамагнитного предела Клогстона-Чандрасекара [16, 17] в тонкопленочном образце в продольном магнитном поле [18-20], изменить свойства неоднородного состояния Ларкина-Овчинникова-Фульде- Φ еррелла (ЛО $\Phi\Phi$) [21, 22] в двумерном сверхпроводящем слое [23] и обеспечить условия для возникновения джозефсоновских переходов со спонтанной разностью фаз в основном состоянии (ϕ_0 -контактов) [24]. Совместное действие сильного обменного поля и СО-взаимодействия может вызвать топологический переход в спектре подщелевых состояний и обеспечить условия формирования майорановских состояний [25, 26]. Для наблюдения большинства этих эффектов требуется наличие достаточно широкой сверхпроводящей щели в спектре и заметное однородное спиновое расщепление энергетиче-

^{*} E-mail: samokh@ipmras.ru

ских уровней. В гибридных структурах с тонким Сслоем и Ф-металлом выполнение этих условий затруднено из-за сильной "утечки" куперовских пар в ферромагнетик, которая приводит к существенному понижению критической температуры сверхпроводящего перехода в пленке из-за обратного эффекта близости [3]. Этот эффект может быть заметно подавлен в структурах с ферромагнитным изолятором (ФИ), где обменное взаимодействие между ферромагнитно-упорядоченными ионами ФИ и электронами проводимости металла приводит к заметному спиновому расщеплению [27-31], а запрещенная зона в ФИ препятствует проникновению сверхпроводящего конденсата в ферромагнетик и заметному ослаблению сверхпроводимости в Сслоях толщиной *d* меньше длины когерентности ξ [32,33] (см., также обзоры [4,34,35] и ссылки в них).

Хотя СО-взаимодействие в сочетании с обменным полем h (или эффектом Зеемана) делает состояние с импульсом, направленном по $[\boldsymbol{\sigma} \times \mathbf{n}]$, более энергетически выгодным, в однородных системах это не приводит к генерации спонтанного сверхтока [11, 12, 36]. В системах с неоднородностью обменного поля и/или СО-взаимодействия формирование состояний с ненулевым спонтанным током оказывается возможным с ряде гибридных систем, таких как СФ-бислой (в пределах глубины проникновения магнитного поля λ от границы) [37, 38], магнитная частица или скирмион на поверхности тонкой сверхпроводящей пленки [39-41] или в замкнутом сверхпроводящем контуре, частично покрытом ферромагнитным изолятором [42]. Наряду с генерацией спонтанного тока, совместное действие обменного поля ФИ и СО-взаимодействия Рашба способно индуцировать в тонкой сверхпроводящей пленке, покрытой ферромагнетиком, вихри Пирла [43], расположенные по периметру области [44-46]. Количество вихрей и их расположение зависят от формы и размера Ф-области, величины и ориентации обменного поля и силы СО-взаимодействия. До настоящего времени вопрос об условиях возбуждения сверхпроводящих вихрей и структуре вихревого состояния в подобных системах изучался в двух предельных случаях: когда характерный латеральный размер *D* области, занятой ферромагнетиком, предполагался либо существенно меньше ($\mathcal{D} \ll \Lambda$), либо заметно превышал ($\mathcal{D} \gg \Lambda$) эффективную глубину проникновения магнитного поля $\Lambda = \lambda^2/d$ в сверхпроводящую пленку с толщиной $d \ll \xi$. Здесь $\lambda = (mc^2/4\pi e^2 n_s)^{1/2}$ — лондоновская глубина проникновения магнитного поля в сверхпроводник. В первом случае это позволяет пренебречь эффектом

экранировки и не учитывать влияния магнитного поля возбуждаемого сверхтока и вихрей [46]. Во втором случае анализ заметно упрощается путем использования асимптотических выражений для энергии взаимодействия между вихрями в пленке [44]. В данной работе изучены структура и свойства и найдены условия формирования вихревого состояния в тонкой пленке сверхпроводника, частично покрытой ферромагнетиком с латеральным размером $\mathcal{D} \sim \Lambda$, если на С Φ -интерфейсе заметную роль играет СО-взаимодействие Рашба. В лондоновском приближении с учетом эффекта экранировки выполнены расчеты распределения спонтанного сверхтока в пленке и создаваемого этим током магнитного поля в зависимости от радиуса диска, силы СОвзаимодействия и величины обменного поля и изучена структура и свойства возникающего вихревого состояния. В разд. 2 обсуждается используемая модель и приведены основные уравнения, необходимые для ее описания. В разд. 3 на основе лондоновского приближения получены аналитические решения, описывающие состояния со спонтанным сверхтоком, возникающим из-за СО-взаимодействия в присутствии спинового расщепления. Выполнены расчеты распределения магнитного поля, которое создается спонтанным сверхтоком в окрестности ФИ-диска. В разд. 4 найдены условия формирования и равновесные конфигурации нескольких ($N_p = 1-3$) пар вихрь-антивихрь, возникающих в такой гибридной системе под действием спонтанного тока. В разд. 5 найдены условия полной компенсации спонтанного тока вихревым источником с нетривиальным распределением фазы сверхпроводящего параметра порядка. Получены приближенные решения, описывающие в непрерывном пределе структуру вихревого состояния, формируемого в окрестности ФИ-диска при сильном СО-взаимодействии и/или обменном поле, когда число пар вихрей N_p велико. В Заключении обсуждаются основные результаты работы.

2. МОДЕЛЬ И ОСНОВНЫЕ УРАВНЕНИЯ

Рассмотрим модельную гибридную СФ-структуру, в которой диск радиуса $R \sim \Lambda$ из ферромагнитного изолятора лежит на тонкой ($\lambda_F \ll d \ll \xi$) пленке сверхпроводника s-типа (рис. 1). Здесь λ_F — фермиевская длина волны С-металла в нормальном состоянии. Эффективное обменное поле $\mathbf{h} = h\mathbf{x}_0$, индуцируемое в ограниченной области С-пленки под диском, будем считать однородным по толщине, так что $h \sim 1/d$ [47–49]. Это поле вызывает расщепление спиновых подзон, частично подавляет исходную синглетную сверхпроводимость в пленке и понижает критическую температуру сверхпроводящего перехода $T_h < T_{c0}$ такой структуры в целом [28,29]. Здесь *T*_{c0} — критическая температура сверхпроводящего перехода в пленке без ФИ-диска. Спин-орбитальное взаимодействие Рашба частично компенсирует эффект разрушения куперовских пар сильным обменным (или зеемановским) полем, что проявляется в повышении критической температуры $T_c C\Phi$ -бислоя или тонкой С-пленки в продольном магнитном поле ($T_c - T_h > 0$) [19, 20, 23, 50, 51]. Этот эффект связан с появлением внутри каждой из расщепленных по спину подзон парных спин-синглетных корреляций, для которых распаривающее действие обменного или зеемановского поля ослаблено [19, 50, 51]. Совместное действие сверхпроводящего спаривания, СО-взаимодействия и спин-расщепляющего поля приводит к формированию так называемой "спиральной" фазы, которая характеризуется спонтанно модулированным параметром порядка ψ в направлении, поперечном полю h, и нормали к поверхности пленки n [36]. На феноменологическом уровне это неоднородное состояние может быть описано добавлением в функционал свободной энергии линейного по оператору импульса $\hat{\mathbf{D}} = -i\hbar \nabla + (2e/c)\mathbf{A}$ (е > 0) слагаемого (инварианта Лифшица) порядка $[\mathbf{n} \times \mathbf{h}] \cdot \psi^* \mathbf{D} \psi$, который устанавливает связь между обменным (или магнитным) полем и сверхтоком при наличии СО-связи. Здесь А — векторный потенциал магнитного поля $\mathbf{B} = \operatorname{rot} \mathbf{A}$. Амплитуда инварианта Лифшица в обобщенном функционале Гинзбурга-Ландау (ГЛ) была вычислена из микроскопических теорий для сверхпроводников без центра инверсии с собственным СО-взаимодействием или поверхностной сверхпроводимости с эффектом Рашба как в чистом, так и в диффузионных пределах [36,50,52–57]. Микроскопическое обоснование инварианта Лифшица в планарных гибридных СФ-структурах с эффектом близости и СО-взаимодействием Рашба получено недавно авторами работы [51]. Подчеркнем, что появление подобного слагаемого в функционале свободной энергии можно обосновать исключительно симметрийными соображениями и характерно для сверхпроводников с нарушенной симметрией пространственной инверсии [58, 59]. Заметим, что спиральное состояние в сверхпроводниках без центра инверсии и планарных структурах с эффектом Рашба принципиально отличается от неоднородного ЛОФФ-состояния, которое возникает из-за смены знака квадратично-градиентного члена в функционале ГЛ и фиксирует амплитуду модуляции, но

Рис. 1. Схематичное изображение модельной СФ-структуры: ферромагнитный диск радиуса R с однородным обменным полем $\mathbf{h} = h\mathbf{x}_0$ на поверхности тонкой сверхпроводящей пленки: (r, θ) — полярная система координат

не ее направление [60]. Поэтому, например, в отличие от ЛОФФ-фазы, неоднородное сверхпроводящее состояние со спиральной модуляцией параметра порядка сохраняется и в присутствии примесей [50,57]. В данной работе предполагается, что параметры гибридной структуры таковы, что ЛОФФ-неустойчивость в системе отсутствует [61,62].

Рассматривая изменения полей и токов на масштабах порядка $\Lambda \gg \lambda \gg \xi$, ограничимся в дальнейшем лондоновским приближением и будем считать распределение сверхтока в пленке однородным по её толщине. Для достаточно низких температур $T_c - T \gg T_{c0} - T_c$ неоднородностью амплитуды сверхпроводящего параметра порядка $\psi = |\psi| e^{i\phi(\mathbf{r})}$ изза обратного эффекта близости можно пренебречь, полагая $|\psi| = \text{const}$ всюду, кроме области сердцевины (кора) вихрей, доля которых в лондоновском приближении мала. Из-за нарушенной симметрии относительно пространственной инверсии в поверхностном слое толщиной $l_{SO} \sim \hbar / \sqrt{2mE_g} \ll d$ вблизи С Φ -границы ($-l_{SO} \leq z \leq 0$) присутствует СОвзаимодействие Рашба, где E_q — типичная величина запрещенной зоны в ФИ. При этих предположениях линейный по импульсу вклад в свободную энергию, усредненный по толщине пленки, можно записать в виде [41]

$$\mathcal{F}_{L} = \frac{\alpha_{R} \, l_{SO}}{E_{F}} |\psi|^{2} \int d\mathbf{r} \left[\mathbf{n} \times \mathbf{h}\right] \left(\nabla \phi + \frac{2\pi}{\Phi_{0}} \mathbf{A}\right), \quad (1)$$

где $\Phi_0 = \pi \hbar c/e$ — квант магнитного потока, а E_F — энергия Ферми в сверхпроводнике. Здесь (r, θ, z) — цилиндрическая система координат (**r** — радиус-вектор в плоскости структуры).

Линейно-градиентный член (1) в функционале свободной энергии ответствен за формирование неоднородного состояния с отличным от нуля импульсом куперевских пар $\mathbf{Q} = Q \mathbf{y}_0$ в направлении, поперечном обменному полю h [36]. Амплитуда $Q \sim (\alpha_R l_{SO} h/E_F) |N_+ - N_-|$ результирующего импульса конденсата определяется конкуренцией между двумя спиральными подзонами, и решающее значение для получения ненулевого результата имеет различие в плотности состояний N_± для этих подзон на уровне Ферми в нормальном состоянии [50,54,57,63]. Поэтому величина импульса **Q** близка к нулю, если энергия обменного поля h и энергия СО-взаимодействия $\alpha_R p_F/\hbar$ заметно отличаются друг от друга ($h \gg \alpha_R k_F$ и $h \ll \alpha_R k_F$), и достигает максимального значения при $h \sim \alpha_R k_F$ [19,51].

Следуя [44], свободную энергию гибридной системы \mathcal{F} в лондоновском приближении с учетом градиентного слагаемого (1) удобно записать в виде

$$\mathcal{F} = \mathcal{F}_0(R) + \frac{1}{8\pi} \int d\mathbf{r} dz \, \mathbf{B}^2 + \frac{1}{8\pi\Lambda} \int d\mathbf{r} \left[\left(\mathbf{G} - \mathbf{A} + \frac{\boldsymbol{\alpha}\Phi_0}{2\pi} \right)^2 - \left(\frac{\boldsymbol{\alpha}\Phi_0}{2\pi} \right)^2 \right], \quad (2)$$

где векторное поле $\mathbf{G}(\mathbf{r}) = -\Phi_0 \nabla \phi/2\pi$ определяется распределением калибровочно-инвариантной фазы сверхпроводящего параметра порядка $\phi(\mathbf{r})$, которое может иметь особенности $\oint_C \nabla \phi \, d\mathbf{c} \neq 0$ при обходе по контуру(ам) C из-за присутствия в пленке вихрей. Параметр

$$\boldsymbol{\alpha}(r) = \begin{cases} \alpha_0 \, \mathbf{y}_0 \,, & r \le R \\ 0, & r > R \end{cases} , \quad \alpha_0 = \frac{8\pi l_{SO}}{d \, \lambda_R} \frac{h}{E_F} \,, \quad (3)$$

отличен от нуля в области, покрытой ФИ-диском, и характеризует совместное действие обменного поля **h** и СО-взаимодействия Рашба ($\lambda_R = 2\pi \hbar/mv_R$ — длина волны, соответствующая импульсу Рашба). Для удобства в выражение (2) добавлена постоянная

$$\mathcal{F}_0(R) = \frac{1}{8\pi\Lambda} \int d\mathbf{r} \left(\frac{\boldsymbol{\alpha}\Phi_0}{2\pi}\right)^2 = \frac{\Phi_0^2 R^2 \alpha_0^2}{32\pi^2\Lambda} \qquad (4)$$

так, чтобы при отсутствии экранирующего сверхтока в пленке $\mathbf{g}(r, \theta) = d \mathbf{j}(r, \theta)$ и магнитного поля свободная энергия \mathcal{F} равнялась нулю. Свободной энергии (2) с калибровкой div $\mathbf{A} = 0$ соответствует следующее уравнение для векторного потенциала \mathbf{A} :

$$-\Delta \mathbf{A} = \frac{4\pi}{c} \mathbf{g}, \qquad (5)$$

$$\mathbf{g}(r,\,\theta) = \frac{c}{4\pi\Lambda} \left(\mathbf{G} - \mathbf{A} + \boldsymbol{\alpha} \frac{\Phi_0}{2\pi} \right) \delta(z) \,. \tag{6}$$

ЖЭТФ, том **162**, вып. 6 (12), 2022

Решение (5), (6) с помощью преобразования Фурье

$$\mathbf{A}(\mathbf{r},z) = \frac{1}{(2\pi)^3} \int d\mathbf{q} \, dk \, \mathbf{A}(\mathbf{q},\,k) \, e^{-i\mathbf{q}\cdot\mathbf{r}-ikz} \,, \qquad (7)$$

$$\mathbf{g}(\mathbf{r}) = \frac{1}{(2\pi)^2} \int d\mathbf{q} \, \mathbf{g}(\mathbf{q}) \, e^{-i\mathbf{q}\cdot\mathbf{r}} \,, \tag{8}$$

$$\mathbf{G}(\mathbf{r}) = \frac{1}{(2\pi)^2} \int d\mathbf{q} \, \mathbf{G}(\mathbf{q}) \, e^{-i\mathbf{q}\cdot\mathbf{r}} \,, \tag{9}$$

где $\mathbf{q} = (q_x, q_y)$ — волновой вектор в плоскости пленки ($q \equiv |\mathbf{q}|$), дает следующие выражения для амплитуды фурье-гармоник векторного потенциала $\mathbf{A}(\mathbf{q}, k)$:

$$\mathbf{A}(\mathbf{q}, k) = \frac{\mathbf{G}(\mathbf{q}) - \mathbf{A}(\mathbf{q}) + \Phi_0 \boldsymbol{\alpha}_q / 2\pi}{(q^2 + k^2)\Lambda}$$
(10)

и сверхтока $\mathbf{g}(\mathbf{q})$

$$\mathbf{g}(\mathbf{q}) = \frac{c}{4\pi\Lambda} \left(\mathbf{G}(\mathbf{q}) - \mathbf{A}(\mathbf{q}) + \frac{\Phi_0}{2\pi} \,\boldsymbol{\alpha}_q \right) \,. \tag{11}$$

Распределение векторного потенциала в плоскости пленки $\mathbf{A}(\mathbf{r}, z = 0)$ определяется амплитудами фурье-гармоник $\mathbf{A}(\mathbf{q})$, выражения для которых очевидным образом находятся из (10):

$$\mathbf{A}(\mathbf{q}) = \frac{1}{2\pi} \int dk \, \mathbf{A}(\mathbf{q}, \, k) =$$
$$= \frac{1}{1 + 2q\Lambda} \left(\mathbf{G}(\mathbf{q}) + \frac{\Phi_0}{2\pi} \boldsymbol{\alpha}_q \right) \,. \tag{12}$$

Амплитуда фурье-гармоники параметра $\boldsymbol{\alpha}(r)$ (3)

$$\boldsymbol{\alpha}_{q} = \alpha_{q} \, \mathbf{y}_{0} = \int d\mathbf{r} \, \boldsymbol{\alpha}(r) \, e^{i\mathbf{q}\cdot\mathbf{r}} \,, \tag{13}$$

ответственного за появление спонтанного сверхтока в структуре, выражается через функцию Бесселя первого рода $J_1(u)$:

$$\alpha_q = 2\pi R \alpha_0 \left[\frac{J_1(qR/\Lambda)}{q} \right] \,. \tag{14}$$

3. СПОНТАННЫЙ ТОК И МАГНИТНОЕ ПОЛЕ

Прежде всего рассмотрим случай потенциального поля

$$\mathbf{G}(\mathbf{r}) \equiv \mathbf{G}^{\alpha}(\mathbf{r}) = -\Phi_0 \nabla \phi^{\alpha} / 2\pi$$

(гот $\mathbf{G}^{\alpha} = 0$), когда особенности в распределении калибровочно-инвариантной фазы сверхпроводящего параметра порядка $\phi^{\alpha}(\mathbf{r})$ отсутствуют, т.е. $\oint_C \nabla \phi^{\alpha} d\mathbf{c} = 0$ при обходе по любому контуру Cна плоскости z = 0. Получим аналитические решения, описывающие пространственное распределение спонтанного тока $\mathbf{g}^{\alpha}(r, \theta)$ и магнитного поля $\mathbf{B}^{\alpha} = \operatorname{rot} \mathbf{A}^{\alpha}$, возникающие в гибридной структуре, изображенной на рис. 1, под действием обменного поля ФИ-диска и СО-взаимодействия Рашба на СФ-поверхности. В этом случае с учетом калибровки div $\mathbf{A}^{\alpha} = 0$ можно получить следующие выражения для амплитуд $\mathbf{G}^{\alpha}(\mathbf{q}) = (G_r^{\alpha}(\mathbf{q}), G_{\theta}^{\alpha}(\mathbf{q}))$ в разложении (9) через амплитуду α_q (14) фурьегармоники параметра $\boldsymbol{\alpha}(r)$ (3), ответственного за СО-взаимодействие:

$$\mathbf{G}^{\alpha}(\mathbf{q}) = -\frac{\Phi_0}{2\pi} \frac{q_y \,\alpha_q}{q^2} \,\mathbf{q} \,. \tag{15}$$

Соответствующее (15) распределение потенциала $\mathbf{G}^{\alpha}(\mathbf{r}) + \Phi_0 \boldsymbol{\alpha}(\mathbf{r})/2\pi$ в пленке в полярной системе координат (r, θ) имеет вид

$$\left(\mathbf{G}^{\alpha} + \frac{\Phi_0}{2\pi} \, \boldsymbol{\alpha} \right)_r = \frac{\Phi_0 \alpha_0}{4\pi} \sin \theta \begin{cases} 1, & r \le R, \\ R^2/r^2, & r > R, \end{cases}$$
(16)
$$\left(\mathbf{G}^{\alpha} + \frac{\Phi_0}{2\pi} \, \boldsymbol{\alpha} \right)_{\theta} = \frac{\Phi_0 \alpha_0}{4\pi} \, \cos \theta \begin{cases} 1, & r < R, \\ 0, & r = R, \\ -R^2/r^2, & r > R. \end{cases}$$
(17)

Амплитуды пространственных гармоник векторного потенциала

$$\mathbf{A}^{\alpha}(\mathbf{q},\,k) = (\mathcal{A}^{\alpha}_r,\,\mathcal{A}^{\alpha}_{\theta})$$

определяются с помощью выражений (10), (12):

$$\mathbf{A}^{\alpha}(\mathbf{q}, k) = \frac{\Phi_0}{\pi} \frac{q_x \left[\mathbf{z}_0 \times \mathbf{q} \right] \alpha_q}{q \left(q^2 + k^2 \right) \left(1 + 2q\Lambda \right)}$$
(18)

и обладают очевидной симметрией

$$\mathbf{A}^{\alpha}(-\mathbf{q}, k) = \mathbf{A}^{\alpha}(\mathbf{q}, -k) = \mathbf{A}^{\alpha}(\mathbf{q}, k).$$

Отсюда, используя соотношение (11) и преобразования Фурье (7)–(9), получим выражения для распределения радиальной $g_r^{\alpha}(\mathbf{r})$ и азимутальной $g_{\theta}^{\alpha}(\mathbf{r})$ компонент спонтанного тока $\mathbf{g}^{\alpha}(\mathbf{r})$ (5) в пленке, записанные в полярной системе координат (r, θ) :

Рис. 2. Распределение спонтанного тока $\mathbf{g}(\mathbf{r})$ (6) в тонкой сверхпроводящей пленке (синие стрелки) в окрестности ФИ-диска с радиусом $R = \Lambda$ с намагниченностью **M** вдоль оси x. Длина стрелки показывает относительную величину тока $|\mathbf{g}|$ в данной точке. Штриховой линией показана область, покрытая ФИ-диском

$$g_r^{\alpha}(r,\theta) = \frac{c\Phi_0\alpha_0}{(4\pi)^2\Lambda} \sin\theta \left\{ \begin{array}{ll} 1, & r \leq R\\ R^2/r^2, & r > R \end{array} - \\ - \frac{2R}{r} \int_0^{\infty} du \, \frac{J_1(uR/\Lambda) \, J_1(ur/\Lambda)}{u(1+2u)} \right\}, \quad (19)$$

$$g_{\theta}^{\alpha}(r,\theta) = \frac{c\Phi_0\alpha_0}{(4\pi)^2\Lambda} \cos\theta \left\{ \begin{array}{ll} 1, & r < R\\ 0, & r = R \end{array} - \\ -R^2/r^2, & r > R \end{array} - \\ - \frac{R}{\Lambda} \int_0^{\infty} du \, \frac{J_1(uR/\Lambda) \, J_0(ur/\Lambda)}{1+2u} + \\ + \frac{R}{\Lambda} \int_0^{\infty} du \, \frac{J_1(uR/\Lambda) \, J_2(ur/\Lambda)}{1+2u} \right\}, \quad (20)$$

где $J_L(u)$ — функция Бесселя первого рода порядка L. На рис. 2 показано распределение спонтанного тока $\mathbf{g}^{\alpha}(\mathbf{r})$ в тонкой сверхпроводящей пленке в окрестности ферромагнитного диска радиусом $R = \Lambda$ с намагниченностью **M** вдоль оси x. На краю области, занимаемой диском, азимутальная компо-

Рис. 3. Распределение *у*-компоненты спонтанного тока $\mathbf{g}(\mathbf{r})$ (6) в сечении y = 0 ($g_y^{\alpha}(x,0) = -g_{\theta}^{\alpha}(r,0)$). Здесь $g_0 = c\Phi_0\alpha_0/(4\pi)^2\Lambda$, а цифры рядом с кривой обозначают радиус диска R в единицах Λ

нента спонтанного тока g^{α}_{θ} испытывает скачок [44]

$$\Delta g^{\alpha}_{\theta}(R, \theta) = g^{\alpha}_{\theta}(R+0, \theta) - g^{\alpha}_{\theta}(R-0, \theta) =$$
$$= -\frac{c\Phi_0\alpha_0}{8\pi^2\Lambda}\cos\theta, \qquad (21)$$

величина которого зависит от угла θ . При этом радиальная компонента спонтанного тока \mathbf{g}_r^{α} меняется непрерывно $\bigtriangleup g_r^{\alpha}(R, \theta) = 0$. На рисунке скачок $\Delta g^{\alpha}_{\theta}(R, \theta)$ отображается изломом линий тока при r = R, который пропадает в полярных точках при $\theta = \pm \pi/2$. На рис. 3 показано распределение у-компоненты спонтанного сверхтока в сечении y = 0, проходящем через центр диска $(g_{\mu}^{\alpha}(x,0) = -g_{\theta}^{\alpha}(r,0)),$ для нескольких значений радиуса ФИ-диска R. Для $R \ll \Lambda$ сверхток в области диска ($x \leq R$) практически однороден по сечению $g_u^{\alpha}(x,0) \approx g_0 = c \Phi_0 \alpha_0 / (4\pi)^2 \Lambda$. Сильная неоднородность распределения сверхтока в области диска при $R \gg \Lambda$ отражает эффект экранировки создаваемого этом током магнитного поля $\mathbf{B}^{\alpha}(\mathbf{r})$. Отметим, что при $r \gg R, \Lambda$ азимутальная компонента спонтанного тока

$$g_{\theta}^{\alpha} \sim \frac{R}{r} \int_{0}^{\infty} du \, \frac{J_1(ur/\Lambda)}{(1+2u)^2} - \frac{\Lambda R}{r^2}$$
(22)

убывает быстрее 1/r на масштабе, зависящем как от радиуса диска R, так и от эффективной глубины проникновения Λ . Для случая $R \gg \Lambda$ спонтанный ток течет преимущественно в окрестности границы диска и заметно подавлен вблизи его центра.

Выражение для свободной энергии (2) для состояния со спонтанным сверхтоком $\mathbf{g}^{\alpha}(r, \theta)$ (19), (20) от совместного влияния обменного поля h и COвзаимодействия Рашба может быть записано в виде

$$\mathcal{F}^{\alpha}(R) = \frac{1}{2} \mathcal{E}_0 R^2 \alpha_0^2 \eta \left(\frac{R}{\Lambda}\right) \,, \tag{23}$$

где $\mathcal{E}_0 = \Phi_0^2/8\pi^2\Lambda$, а функция

$$\eta(\rho) = \int_{0}^{\infty} du \frac{J_{1}^{2}(u\rho)}{1+2u} - \frac{1}{4} \int_{0}^{\infty} du \frac{J_{1}^{2}(u\rho)}{(1+2u)^{2}}$$
(24)

принимает значение $\eta(0) = 0.25$ и монотонно убывает до нуля при $\rho \to \infty$. При этом свободная энергия $\mathcal{F}^{\alpha}(R)$ монотонно растет с увеличением радиуса диска R, и $\mathcal{F}^{\alpha}(R) \simeq 0.5\mathcal{F}_0(R)(1 - 5R/3\pi\Lambda)$ при $R \ll \Lambda$.

Спонтанный сверхток $\mathbf{g}^{\alpha}(\mathbf{r})$ создает в окружающем пространстве магнитное поле $\mathbf{B}^{\alpha}(\mathbf{r}, z) = \operatorname{rot} \mathbf{A}^{\alpha}$, амплитуды пространственных фурье-гармоник которого

$$\mathbf{B}^{\alpha}(\mathbf{q}, k) = -i[(\mathbf{q} + k \mathbf{z}_0) \times \mathbf{A}^{\alpha}(\mathbf{q}, k)]$$

очевидным образом выражаются через амплитуды гармоник векторного потенциала $\mathbf{A}^{\alpha}(\mathbf{q}, k)$ (18). Соответствующие выражения для компонент магнитного поля $\mathbf{B}^{\alpha} = (B_r^{\alpha}, B_{\theta}^{\alpha}, B_z^{\alpha})$ в цилиндрической системе координат имеют вид

$$B_{r}^{\alpha}(r,\,\theta,\,z) = \operatorname{sign}(z) \frac{\Phi_{0}R\alpha_{0}}{4\pi\Lambda^{2}} \cos\theta \times \int_{0}^{\infty} du \frac{uJ_{1}(uR/\Lambda)}{1+2u} \left[J_{0}(ur/\Lambda) - J_{2}(ur/\Lambda) \right] e^{-u|z|/\Lambda} , (25)$$
$$B_{\theta}^{\alpha}(r,\,\theta,\,z) = -\operatorname{sign}(z) \frac{\Phi_{0}R\alpha_{0}}{2\pi\Lambda r} \sin\theta \times \int_{0}^{\infty} du \frac{J_{1}(uR/\Lambda) J_{1}(ur/\Lambda)}{1+2u} e^{-u|z|/\Lambda} , \qquad (26)$$

$$B_{z}^{\alpha}(r,\,\theta,\,z) = -\frac{\Phi_{0}R\alpha_{0}}{2\pi\Lambda^{2}}\cos\theta \times \int_{0}^{\infty} du \frac{uJ_{1}(uR/\Lambda)J_{1}(ur/\Lambda)}{1+2u} e^{-u|z|/\Lambda}.$$
(27)

В плоскости пленки (z = 0) нормальная компонента магнитного поля B_z^{α} может быть представлена в виде

Рис. 4. Зависимость $b_R(\rho)$, определяющая распределение нормальной к плоскости диска компоненты магнитного поля $B_z^{\alpha}(r, \theta, 0)$ (28), создаваемого спонтанным током $\mathbf{g}^{\alpha}(\mathbf{r})$ (19), (20). Цифры рядом с кривой обозначают радиус диска R в единицах Λ

$$B_{z}^{\alpha}(r, \theta, 0) = -B_{0}(R) b_{R}(r/R) \cos \theta, \qquad (28)$$

$$b_{R}(\rho) = \frac{1}{2} \int_{0}^{\infty} du \frac{J_{1}(uR/\Lambda) J_{1}(\rho \, uR/\Lambda)}{u(1+2u)} + \begin{cases} \frac{\Lambda \rho}{2R} {}_{2}F_{1}\left(\frac{3}{2}; \frac{1}{2}; 2; \rho^{2}\right) - \frac{\rho}{4}, & \rho < 1, \\ \frac{\Lambda/R}{2\rho^{2}} {}_{2}F_{1}\left(\frac{3}{2}; \frac{1}{2}; 2; \rho^{-2}\right) - \frac{1}{4\rho}, & \rho > 1, \end{cases}$$

где $B_0(R) = \Phi_0 R \alpha_0 / 4 \pi \Lambda^2$, а $_2F_1(a; b; 2; \zeta)$ — гипергеометрическая функция Гаусса. Таким образом, радиальная зависимость $B_z^{\alpha}(r, \theta, 0)$ (28) определяется универсальной функцией $b_R(\rho)$ (29), которая зависит только от отношения R/Λ и при $R \lesssim \Lambda \ll r$ убывает по степенному закону как

$$b_R(\rho) \approx \frac{6\Lambda^3}{R^3} \left(1 + \frac{R^2}{32\Lambda^2} \right) \rho^{-4} \,.$$
 (30)

На рис. 4 показана зависимость $b_R(\rho)$ (29) для нескольких значений радиуса диска R. Отличие кривых $b_R(\rho)$ для разных значений R/Λ отражает влиянии эффекта экранировки на распределение сверхтока в пленке и индуцируемого им магнитного поля для $R \gtrsim \Lambda$. При $\rho \to 1$ функция $b_R(\rho)$ (29) имеет логарифмическую особенность

$$b_R(\rho) \approx \frac{\Lambda}{\pi R} \ln\left(\frac{1}{2|1-\rho|}\right)$$
, (31)

которая приводит к расходимости нормальной к плоскости пленки компоненты магнитного

Рис. 5. Зависимость магнитного потока Φ_z^{lpha} (33) через полуплоскость $x \ge 0$ от радиуса ФИ-диска ($\Phi_{lpha} = \Phi_0 \Lambda \alpha_0 / \pi$). На вставке показан контур C_{∞} , используемый для вычисления магнитного потока

поля $B_z^{\alpha}(r, \theta, 0)$ (28) у границы области, занятой ФИ-диском. Расходимость компоненты поля $B_z^{\alpha}(r \to R, \theta, 0)$ является следствием лондоновского приближения и используемой здесь модели резкого (ступенчатого) изменения параметра $\alpha(r)$ (3). Как и в случае вихря Абрикосова, оценку величины магнитного поля на границе диска можно получить с логарифмической точностью, если "обрезать" расходимость в формуле (31) на характерном масштабе $\delta \ll \xi$, определяющем размер переходной области в сверхпроводнике, где индуцированное в сверхпроводнике обменное поле h уменьшается до нуля:

$$B_z^{lpha}(R,\, heta,\,0)\sim -rac{\Phi_0lpha_0}{4\pi^2\Lambda}\,\ln\left(rac{R}{2\delta}
ight)\,\cos heta$$

Проинтегрировав распределение магнитного поля B_z^{α} (28), (29) по полуплоскости $x \ge 0$, вычислим величину магнитного потока

$$\Phi_{z}^{\alpha}\Big|_{x\geq 0} = \int_{0}^{\infty} r dr \int_{-\pi/2}^{\pi/2} d\theta B_{z}^{\alpha}(r, \theta, 0) =$$
$$= -\frac{4\pi\Lambda}{c} \oint_{C_{\infty}} d\mathbf{c} \, \mathbf{g}^{\alpha}(r, \theta) \,, \qquad (32)$$

создаваемого сверхтоком $\mathbf{g}^{\alpha}(r, \theta)$ (19), (20). Контур интегрирования C_{∞} показан на вставке к рис. 5. Поскольку при $r \gg R, \Lambda$ азимутальная компонента спонтанного тока $\mathbf{g}^{\alpha}_{\theta}(r,\theta)$ (22) убывает быстрее 1/r, то

$$\begin{split} \Phi_z^{\alpha} \bigg|_{x \ge 0} &= -\frac{8\pi\Lambda}{c} \int_0^\infty dr \, \mathbf{g}_r^{\alpha} \left(r, \, \frac{\pi}{2}\right) = -\frac{\Phi_0 R \alpha_0}{\pi} \times \\ &\times \left\{ 1 + \frac{2\Lambda}{R} - \frac{\pi}{2} \left[H_1 \left(\frac{R}{2\Lambda}\right) - Y_1 \left(\frac{R}{2\Lambda}\right) \right] \right\} \,, \quad (33) \end{split}$$

где H_1 и Y_1 — функции соответственно Струве и Бесселя второго рода. На рис. 5 показана зависимость магнитного потока Φ_z^{α} (33) через полуплоскость $x \ge 0$ от радиуса ФИ-диска ($\Phi_{\alpha} = \Phi_0 \Lambda \alpha_0 / \pi$). Величина магнитного потока (33) линейно растет с увеличением радиуса диска ($\Phi_z^{\alpha} \simeq \Phi_{\alpha} R / \Lambda$) при $R \ll \Lambda$, асимптотически приближаясь к значению $2\Phi_{\alpha}$ при $R \gg \Lambda$. Магнитный поток $\Phi_z^{\alpha}|_{x\le 0} = 0$, создаваемый сверхтоком, через полуплоскость $x \le 0$ равен $-\Phi_z^{\alpha}|_{x\ge 0}$, и суммарный поток через всю плоскость, естественно, отсутствует ($\Phi_z^{\alpha} = \Phi_z^{\alpha}|_{x\ge 0} + \Phi_z^{\alpha}|_{x\le 0} = 0$).

4. ВЗАИМОДЕЙСТВИЕ ВИХРЕЙ ПИРЛА СО СПОНТАННЫМ ТОКОМ

Спонтанный ток \mathbf{g}^{α} (19), (20), возбуждаемый в рассматриваемой гибридной структуре совместным действием обменного поля ФИ и СО-взаимодействия Рашба, может индуцировать в тонкой сверхпроводящей пленке вихри Пирла, распределенным центром пиннинга для которых является периметр занятой ферромагнетиком области [44,46]. По топологическим соображениям такие вихри должны возникать парами (вихрь и антивихрь), если внешнее магнитное поле отсутствует и ФИ-диск расположен далеко (на расстоянии $\gg R, \Lambda$) от границ сверхпроводника. Условие, при выполнении которого присутствие вихрей в гибридной структуре с характерным размером ферромагнитной области $\mathcal{D} \gg \Lambda$ оказывается возможным, было получено в работе [44]: свободная энергия состояния с вихрями меньше энергии (23) безвихревого (мейснеровского) состояния, если параметр α_0 превышает критическое значение, которое убывает как $1/\ln(\mathcal{D}/\Lambda)$ с увеличением \mathcal{D} . При этом вихри и антивихри образуют вихревые цепочки, расположенные у противоположных границ ферромагнитной области, расстояние между вихрями *l* в которых также велико $(l \gg \Lambda)$ [44]. В противоположном случае $(l \ll \mathcal{D} \ll \Lambda)$ при достаточно большом значении параметра α_0 ферромагнитная область оказывается окруженной

ник $\mathbf{A}^{m}(\mathbf{q}, k)$ имеют вид [64]

решение которого $\mathbf{A}^m(\mathbf{r},z)$ хорошо известно и может

$$\mathbf{A}^{m}(\mathbf{q}, k) = \frac{-2i\sigma_{m}\Phi_{0}\left[\mathbf{q}\times\mathbf{z}_{0}\right]}{q(q^{2}+k^{2})(1+2q\Lambda)} e^{i\mathbf{q}\cdot\mathbf{r}_{m}} .$$
 (38)

Предполагая, что вихри в пленке возникают попарно (вихрь–антивихрь), и в равновесии при отсутствии других центров пиннинга располагаются по периметру ферромагнитного диска, где спонтанный сверхток \mathbf{g}^{α} (19), (20) формирует для них потенциальную яму, можно легко из соображений симметрии представить, как выглядят простейшие вихревые конфигурации, соответствующие формированию нескольких пар вихрей $N_p = 1-3$ в гибридной системе (см. рис. 6). Заметим, что направление тока в вихре $\mathbf{g}^m(\mathbf{r})$ противоположно направлению спонтанного тока $\mathbf{g}^{\alpha}(\mathbf{r})$, что приводит к уменьшению ам-

плотной "шубой" из вихрей, распределение вихревого тока в которых компенсирует в среднем возникающий спонтанный сверхток \mathbf{g}^{α} и магнитное поле B_z^{α} [46].

В рассматриваемом здесь случае диска радиуса $R \sim \Lambda$ оба эти приближения не справедливы, и для определения условий возникновения сверхпроводящих вихрей в окрестности области, покрытой ферромагнетиком, следует учитывать их дискретность, полагая

$$\mathbf{A} = \mathbf{A}^{\alpha} + \sum_{m} \mathbf{A}^{m}, \quad \mathbf{B} = \mathbf{B}^{\alpha} + \sum_{m} \mathbf{B}^{m},$$
$$\mathbf{G} = \mathbf{G}^{\alpha} + \sum_{m} \mathbf{S}^{m}$$
(34)

в функционале свободной энергии (2), и особенности распределения фазы сверхпроводящего параметра порядка, создаваемые вихрем ($\sigma_m = 1$) или антивихрем ($\sigma_m = -1$) в точке $\mathbf{r} = \mathbf{r}_m$,

$$\operatorname{rot} \mathbf{S}^{m} = \sigma_{m} \Phi_{0} \mathbf{z}_{0} \delta(\mathbf{r} - \mathbf{r}_{m}) \,. \tag{35}$$

Распределение магнитного поля $\mathbf{B}^m = \mathrm{rot} \mathbf{A}^m$ и сверхтока

$$\mathbf{g}^{m}(\mathbf{r}) = \frac{c}{4\pi\Lambda} (\mathbf{S}^{m} - \mathbf{A}^{m}) \,\delta(z) \tag{36}$$

в вихре Пирла с центром в точке $\mathbf{r} = \mathbf{r}_m$ в тонкой пленке сверхпроводника описываются уравнением [43]

$$-\Delta \mathbf{A}^{m} = \frac{1}{\Lambda} \left(\mathbf{S}^{m} - \mathbf{A}^{m} \right) \delta(z) , \qquad (37)$$

плитуды магнитного поля **В** и скачка тангенциальной компоненты сверхтока

$$\mathbf{g}(r,\,\theta) = \mathbf{g}^{\alpha} + \sum_{m} \mathbf{g}^{m}$$

на границе диска при r = R. Для $N_p = 1$ (рис. 6*a*) вихри, очевидно, располагаются на оси *x* в точках ($x_m = \pm R$, $y_m = 0$), и свободная энергия \mathcal{F} (2) такого состояния при заданном радиусе диска *R* зависит только от параметра взаимодействия α_0 . Для $N_p \ge 2$ появляются вихри, равновесное положение которых определяется углом $\theta_m \neq 0$ (рис. 6*b*), при котором свободная энергия *F* при прочих равных условиях принимает минимальное значение.

Свободную энергию $\mathcal{F}(2)$ гибридной системы с N_p парами вихрь–антивихрь на границе ферромагнитного диска удобно представить следующим образом:

$$\mathcal{F}_{N_p} = \mathcal{F}^{\alpha} + 2N_p \left(\mathcal{E}_P + \mathcal{E}_c\right) + \frac{1}{2} \sum_{\substack{n,m=1\\n \neq m}}^{2N_p} U_{nm} + \sum_{\substack{m=1\\m \neq m}}^{2N_p} V_m^{\alpha},$$
(39)

где \mathcal{F}^{α} — не зависящая от конфигурации вихрей часть свободной энергии (23), которая включает в себя энергию спонтанного сверхтока \mathbf{g}^{α} (19), (20) и создаваемого им магнитного поля \mathbf{B}^{α} (25)–(27), а

$$\mathcal{E}_P = \frac{\Phi_0^2}{16\pi^2\Lambda}\ln(\Lambda/\xi)$$

— энергия вихря Пирла. Появление каждого вихря приводит к подавлению сверхпроводимости в области его кора с объемом $\mathcal{V}_c \approx \pi \xi^2 d$, что увеличивает свободную энергию на величину

$$\mathcal{E}_c = H_{cm}^2 \mathcal{V}_c / 8\pi \approx \Phi_0^2 / 64\pi^2 \Lambda \ll \mathcal{E}_P,$$

вкладом которой можно пренебречь. Энергия парного взаимодействия U_{nm} вихрей Пирла n и m зависит от полярности вихрей $\sigma_{m,n}$ и расстояния a_{nm} между ними и может быть следующим образом выражена через функции Струве H_0 и Бесселя второго рода Y_0 [65]:

$$U_{nm} = \frac{\sigma_n \sigma_m \Phi_0^2}{16\pi\Lambda} \left[H_0 \left(\frac{a_{nm}}{2\Lambda} \right) - Y_0 \left(\frac{a_{nm}}{2\Lambda} \right) \right].$$
(40)

Последнее слагаемое в (39) описывает суммарную работу спонтанного сверхтока \mathbf{g}^{α} над вихрями, которая зависит от положения вихря m на периметре

диска (R, θ_m) и полярности вихря σ_m , и может быть записана в виде

$$V_m^{\alpha} = -\frac{\sigma_m \Phi_0^2 R \alpha_0}{16\pi^2 \Lambda} \nu(R/\Lambda) \cos \theta_m ,$$

$$\nu(\rho) = 1 - 2 \int_0^{\infty} du \, \frac{J_1^2(u\,\rho)}{u(1+2u)} .$$
(41)

Выражения для энергии парного взаимодействия вихрей Пирла (40) и работы спонтанного сверхтока над вихрями (41) существенно упрощаются в случае $\xi \ll R \ll \Lambda$, когда влияние экранировки мало:

$$U_{nm} \simeq \frac{\sigma_n \sigma_m \Phi_0^2}{8\pi^2 \Lambda} \left[\ln \left(\frac{4\Lambda}{a_{nm}} \right) - C + \frac{a_{nm}}{2\Lambda} \right], \quad (42)$$

$$V_m^{\alpha} \simeq -\frac{\sigma_m \Phi_0^2 R \alpha_0}{16\pi^2 \Lambda} \cos \theta_m \left(1 - \frac{4R}{3\pi\Lambda}\right) \,, \tag{43}$$

где $C \simeq 0.577$ — постоянная Эйлера. Ограничимся в дальнейшем анализом только симметричных конфигураций, показанных на рис. 6. Устойчивая конфигурация вихрей соответствует минимуму свободной энергии \mathcal{F}_{N_p} (39). Варьируемыми параметрами являются число пар N_p и положение вихрей, характеризуемое углом θ_m .

4.1. Разрушение безвихревого состояния

Состояние с одной парой вихрь–антивихрь $(N_p = 1)$ в рассматриваемой гибридной системе (рис. 6*a*) становится энергетически более выгодным, если выполнено условие $\mathcal{F}_1 < \mathcal{F}_0$. Это требование накладывает очевидное ограничение на параметр $\alpha_0 > \alpha_0^{(1)}(R)$ (т.е. на силу СО-взаимодействия и величину эффективного обменного поля), где

$$\alpha_0^{(1)}(R) = \frac{2\ln(\Lambda/\xi) - \pi \left[H_0(R/\Lambda) - Y_0(R/\Lambda)\right]}{2R\nu(R/\Lambda)} \quad (44)$$

зависит от радиуса ФИ-диска. При всех разумных $R \gg \xi$ функция $\alpha_0^{(1)}(R)$ (44) монотонно убывает с увеличением радиуса диска R (рис. 7). Используя известные асимптотики для функций Струве H_0 и Бесселя Y_0 , можно получить простые выражения

$$\alpha_0^{(1)}(R) \simeq \begin{cases} \left(\ln(R/2\xi) + C \right)/R, & R \ll \Lambda, \\ \ln(\Lambda/\xi)/4\Lambda \ln(R/\Lambda), & R \gg \Lambda, \end{cases}$$
(45)

описывающие зависимость $\alpha_0^{(1)}(R)$ (44) в двух предельных случаях. Заметим, что для $R \gg \Lambda$ выражение для $\alpha_0^{(1)}(R)$ (45) совпадает с аналогичным условием появления вихрей на границах области в виде широкой полоски ФИ на сверхпроводнике, полученным в работе [44]. Расчеты показали, что появление пары вихрь-антивихрь оказывается возможным уже при относительно слабом

Рис. 6. Простейшие конфигурации N_p пар вихрь-антивихрь на границе ферромагнитного диска. Положение вихря и антивихря симметрично относительно оси y. Линии сверхтока \mathbf{g}^{α} (19), (20) показаны штриховой линией, а линии тока в вихрях — точками

Рис. 7. Зависимость параметра $\alpha_0^{(1)}$ (44) от радиуса ФИдиска R (сплошная линия) для $\ln(\Lambda/\xi) = 5$. Штриховой линией и пунктирной показаны асимптотические зависимости (45) для случаев соответственно $R \gg \Lambda$ и $R \ll \Lambda$

СО-взаимодействии и спиновом расщеплении, а характерный пространственный масштаб этого взаимодействия $l_{\alpha}^{(1)} = 1/\alpha_0^{(1)} \sim \Lambda/\ln(\Lambda/\xi)$ определяется большой эффективной глубиной проникновения $\Lambda \gg \lambda, \xi$ практически при всех значениях радиуса диска R, за исключением $R \ll \Lambda$, когда $\alpha_0^{(1)}$ заметно возрастает. Так, для сверхпроводящей пленки с $\lambda = 10^3 \text{ Å}$ толщиной $d \sim 10 l_{SO} \approx 20 \text{ Å}$ и радиусом ФИ-диска $R = \Lambda = 5$ мкм получим $l_{\alpha}^{(1)} \approx 10^4 \text{ Å}$, что вполне достижимо для типичных значений параметра СО-связи $v_F/v_R \sim 10$ [67] и величины обменного поля $E_F/h \sim 10$ –100 [34, 66, 68] :

$$1/\alpha_0 \sim (d/l_{SO})(v_F/v_R)(E_F/h)\lambda_F \approx 10^3 - 10^4 \text{ Å}.$$

С увеличением радиуса ФИ-диска требования к силе СО-взаимодействия и величине спинового расщепления, при которых становится возможным формирование пар вихрь–антивихрь на границе, оказываются более слабыми.

При низких температурах, $T \ll T_c$, состояние с парой вихрь-антивихрь отделено от безвихревого потенциальным барьером, который пропадает, если величина спонтанного тока \mathbf{g}^{α} в какойто точке пленки превышает ток распаривания $g_d = c\Phi_0/12\sqrt{3}\pi^2\Lambda\xi$. Из анализа выражений (19), (20) видно, что $|\mathbf{g}^{\alpha}|$ принимает максимальное значение на расстоянии порядка длины когерентности ξ от точек (R, 0) и (R, π) (см. рис. 3):

$$g_{max}^{\alpha} = \frac{c\Phi_0\alpha_0}{(4\pi)^2\Lambda} \left[1 + 2\int_0^\infty du \, \frac{J_1^2(uR/\Lambda)}{(1+2u)^2} \right] \approx g_0 \quad (46)$$

и слабо зависит от радиуса диска R. Условие $g_{max}^{\alpha} \geq g_d$ определяет значения параметра

 $\alpha_0 \gtrsim \alpha_0^* \approx \xi^{-1} (4/3\sqrt{3}) \gg \alpha_0^{(1)}(R),$

при которых возникающий в гибридной системе ток \mathbf{g}^{α} достаточен для рождения пар вихрь—антивихрь.

4.2. Вихревые состояния в гибридной системе

При $\alpha_0 > \alpha_0^{(1)}$ в рассматриваемой гибридной системе возможны состояния с несколькими парами вихрь-антивихрь ($N_p \ge 2$). Примеры таких вихревых конфигураций показаны на рис. 6 *b*, *c*. Равновесное расположение вихрей в этом случае определяется углом $\theta_m = \theta_v$, которому соответствует локальный минимум свободной энергии, т.е. при котором

0

Рис. 8. Зависимость свободной энергии $\mathcal{F}_{N_p}(a)$ и угла $\theta_v(b)$ от параметра α_0 для симметричных конфигураций вихрей, показанных на рис. 6: $N_p = 1$ — синие треугольники; $N_p = 2$ — зеленые квадраты; $N_p = 3$ — коричневые кружки для радиуса диска $R = \Lambda (\ln(\Lambda/\xi) = 5, \mathcal{E}_0 = \Phi_0^2/8\pi^2\Lambda)$. Состоянию без вихрей соответствует свободная энергия $\mathcal{F}_0 = 0$. Вертикальные линии разделяют области с разным числом пар вихрей $N_p = 0$ -3

 $\partial \mathcal{F}_{N_n}/\partial \theta_m = 0$. На рис. 8 и 9 показаны зависимости свободной энергии $\mathcal{F}_{N_p=1-3}$ (39) от параметра α₀ для двух значений радиуса ФИ-диска. Заметим, что для заданного числа пар N_p локальный минимум свободной энергии (39) существует, если параметр α_0 превышает критическое значение $\alpha_0^{(N_p)}(R)$, которое растет с увеличением N_p и зависит от радиуса диска R. Используя простые асимптотики (42), (43), можно показать, что при $R \ll \Lambda$ решение уравнения $\partial \mathcal{F}_{2(3)}/\partial \theta_m = 0$ существует и конфигурации вихрей, изображенные на рис. 6b, c, возможны, если $\alpha_0 \ge \alpha_0^{(2)} = 3\sqrt{3}/2R \simeq 2.6/R$ и $\alpha_0 \ge \alpha_0^{(3)} \simeq 5.3/R$ соответственно. При произвольном соотношении между R и Λ тенденция уменьшения $lpha_0^{(N_p)}(R)$ с увеличением радиуса диска сохраняется. С увеличением силы СО-взаимодействия и/или эффективного обменного поля растет число пар вихрь–антивихрь N_p , для которого соответствующее значение свободной

Рис. 9. Зависимость свободной энергии \mathcal{F}_{N_p} (а) и угла θ_v (b) от параметра α_0 для симметричных конфигураций вихрей, показанных на рис. 6: $N_p = 1$ — синие треугольники; $N_p = 2$ — зеленые квадраты; $N_p = 3$ — коричневые кружки для радиуса диска $R = 5\Lambda (\ln(\Lambda/\xi) = 5, \mathcal{E}_0 = \Phi_0^2/8\pi^2\Lambda)$. Состоянию без вихрей соответствует свободная энергия $\mathcal{F}_0 = 0$. Отмеченная область показана на вставке в увеличенном масштабе. Вертикальные линии разделяют области с разным числом пар вихрей $N_p = 1$ -3

энергии \mathcal{F}_{N_p} принимает минимальное значение. Одновременно с этим увеличивается суммарная завихренность N_p состояния в правой (левой) полуплоскости $x \ge 0$ ($x \le 0$) и величина магнитного потока Φ_z ($-\Phi_z$). Используя известное выражение для азимутальной компоненты сверхтока в вихре Пирла через функции Струве H_1 и Бесселя второго рода Y_1 [65], можно вычислить магнитный поток Φ_z^m через полуплоскость $x \ge 0$, создаваемый парой вихрьантивихрь, расположенными соответственно в точках ($R \cos \theta_m, R \sin \theta_m$) и ($-R \cos \theta_m, R \sin \theta_m$):

$$\Phi_z^m = \Phi_0 \left\{ 1 - \frac{R}{4\Lambda} \cos \theta_m \times \int_{-\infty}^{\infty} \frac{dy}{\rho_m} \left[H_1 \left(\frac{\rho_m}{2\Lambda} \right) - Y_1 \left(\frac{\rho_m}{2\Lambda} \right) - \frac{2}{\pi} \right] \right\}, \quad (47)$$

Рис. 10. Зависимость магнитного потока Φ_z (48) через полуплоскость $x \ge 0$ от параметра α_0 для симметричных конфигураций вихрей, показанных на рис. 6: $N_p = 0 -$ сплошная линия; $N_p = 1 -$ синие треугольники; $N_p = 2 -$ зеленые квадраты; $N_p = 3 -$ коричневые кружки для радиуса диска $R = \Lambda$

где $\rho_m(y) = (R^2 + y^2 - 2Ry\sin\theta_m)^{1/2}$ – расстояние от центра вихря до точки (0, y) на оси. Зависимость суммарного магнитного потока через полуплоскость $x \ge 0$, создаваемого вихрями и спонтанным током

$$\Phi_z = \Phi_z^{\alpha} + \sum_{m=0}^{N_p} \Phi_z^m, \qquad (48)$$

от параметра α_0 показана на рис. 10. Кривая $\Phi_z(\alpha_0)$ зависимости суммарного магнитного потока от параметра α_0 состоит из отдельных ветвей, каждая из которых соответствует определенному числу N_p . При переходе с одной ветви на другую изменяется число пар вихрей N_p и происходит изменение вихревого состояния, сопровождающееся скачком суммарного магнитного потока Φ_z .

5. КОМПЕНСАЦИЯ СПОНТАННОГО ТОКА ВИХРЯМИ ПИРЛА

При заметном превышения параметра α_0 над значением $\alpha_0^{(1)}(R)$ ($\alpha_0 \gg \alpha_0^{(1)}(R)$) число пар вихрь– антивихрь N_p , соответствующее минимуму свободной энергии \mathcal{F}_{N_p} , становится большим ($N_p \gg 1$) и поиск оптимальной конфигурации вихрей с помощью выражения (39), учитывающего их дискретность, становится затруднительным и неэффективным. В этом случае уместно использовать модели, которые не учитывают дискретность вихрей, а для описания возникающей вихревой структуры используют усредненные характеристики, такие как плотность (число N) вихрей или среднее расстояние $l \gtrsim \xi$ между ними [44, 46]. По-прежнему будем предполагать, что вихри располагаются только по периметру ФИ-диска, формируя в пленке среднее вихревое поле

$$\mathbf{\Omega}(\mathbf{r}) = \left\langle \sum_{m} \mathbf{S}^{m}(\mathbf{r}) \right\rangle_{L}, \quad \xi, \, l \ll L \ll R, \Lambda \,, \quad (49)$$

связанное с фазой сверхпроводящего параметра порядка $\Omega(\mathbf{r}) \sim \nabla \langle \phi(\mathbf{r}) \rangle_L$. Усреднение в выражении (49) проводится на масштабе L, который заметно превышает расстояние между вихрями l, оставаясь меньше характерных расстояний R и Λ , на которых заметно меняются распределения магнитного поля $\mathbf{B}^{\alpha}(\mathbf{r}, z)$ и спонтанного тока $\mathbf{g}^{\alpha}(\mathbf{r})$.

Учитывая вид распределения магнитного поля $B_z^{\alpha}(r, \theta, 0)$ (27) и сверхтока $\mathbf{g}^{\alpha}(r, \theta)$ (19), (20), выберем вихревое поле таким образом, чтобы соответствующая ему фаза сверхпроводящего параметра порядка $\langle \phi(\mathbf{r}) \rangle_L$ имела при r = R распределенную по периметру диска особенность вида

$$\operatorname{rot} \mathbf{\Omega} = \mu \frac{\Phi_0 \alpha_0}{2\pi} \mathbf{z}_0 \, \cos \theta \, \delta(r - R) \,. \tag{50}$$

В этом случае следует положить

$$\mathbf{G}(\mathbf{r}) = \mathbf{G}^{lpha}(\mathbf{r}) + \mathbf{\Omega}(\mathbf{r})$$

в функционале свободной энергии \mathcal{F} (2). Здесь μ — численный коэффициент порядка единицы, соответствующий при заданных значениях параметра α_0 и радиуса диска R минимуму функционала \mathcal{F} .

Используя стандартную методику, основанную на преобразовании Фурье (9), получим следующее выражение для амплитуд фурье-гармоник $\Omega(\mathbf{q})$ вихревого векторного поля $\Omega(\mathbf{r})$:

$$\mathbf{\Omega}(\mathbf{q}) = \mu \Phi_0 R \alpha_0 \frac{J_1(qR)}{q^2} [\mathbf{q} \times \mathbf{z}_0] \cos \beta , \qquad (51)$$

где β — это полярный угол на плоскости волновых векторов **q**. Легко убедиться, что

$$\mathbf{\Omega}(\mathbf{q}) = -\mu \left(\mathbf{G}^{\alpha}(\mathbf{q}) + \frac{\Phi_0}{2\pi} \boldsymbol{\alpha}_q \right) \,, \tag{52}$$

а распределения векторного потенциала $\mathbf{A}^{\Omega}(\mathbf{r}, z)$, магнитного поля $\mathbf{B}^{\Omega}(\mathbf{r}, z) = \operatorname{rot} \mathbf{A}^{\Omega}$ и сверхтока

$$\mathbf{g}^{\Omega}(\mathbf{r}) = \frac{c}{4\pi\Lambda} \left(\mathbf{\Omega} - \mathbf{A}^{\Omega} \right) \,\delta(z) \,, \tag{53}$$

соответствующие вихревому источнику (50), с точностью до коэффициента μ повторяют аналогичные распределения, создаваемые в сверхпроводящей пленке совместным действием СО-взаимодействия и обменного поля:

$$\mathbf{A}^{\Omega} = -\mu \, \mathbf{A}^{\alpha} \,, \quad \mathbf{B}^{\Omega} = -\mu \, \mathbf{B}^{\alpha} \,, \quad \mathbf{g}^{\Omega} = -\mu \, \mathbf{g}^{\alpha} \,. \tag{54}$$

Очевидно, что при $\mu = 1$ вихревой сверхток \mathbf{g}^{Ω} (53) в точности компенсирует спонтанный сверхток \mathbf{g}^{α} (19), (20) в любой точке сверхпроводящей пленки

$$\mathbf{g}(\mathbf{r}) = \mathbf{g}^{\alpha}(\mathbf{r}) + \mathbf{g}^{\Omega}(\mathbf{r}) \equiv 0,$$

соответствующее этому случаю магнитное поле отсутствует ($\mathbf{B} = \mathbf{B}^{\alpha} + \mathbf{B}^{\Omega} \equiv 0$), а свободная энергия (2) принимает свое минимальное значение $\mathcal{F} = 0$. Возможность подобной компенсации на масштабе $\xi \ll L \ll \Lambda$ спонтанного сверхтока \mathbf{g}^{α} и *z*компоненты магнитного поля B_z^{α} с помощью подбора распределения вихрей и антивихрей в окрестности ФИ-области отмечалась в работе [46]. При $\mu = 1$ вихревой источник Ω (50) можно рассматривать как плотную цепочку вихрей Пирла, расположенных по периметру ФИ-диска на расстоянии $l \lesssim \xi$ друг от друга. Для возможности установления такого состояния увеличение свободной энергии

$$\mathcal{F}_{\Omega} = H_{cm}^2 \mathcal{V}_{\Omega} / 8\pi \approx (R/\xi) \, \Phi_0^2 / 32\pi^2 \Lambda,$$

вызванное подавлением сверхпроводимости в области с объемом $\mathcal{V}_{\Omega} \approx 2\pi R\xi d$, не должно превышать энергию \mathcal{F}_0 (4). Условие $\mathcal{F}_{\Omega} - \mathcal{F}_0 \leq 0$ определяет значения параметра $\alpha_0 \gtrsim \alpha_0^{\Omega} = (R\xi)^{-1/2} \ll \alpha_0^*$, для которых состояние с распределенным вихревым источником (50) при $\mu = 1$ и подавленным параметром порядка в кольце шириной ξ у границы диска оказывается энергетически выгодным. С другой стороны, для формирования плотной цепочки вихрей следует потребовать выполнение условия $\alpha_0^{\Omega} \gg \alpha_0^{(1)}$, накладывающее определенное ограничение на параметры, которое при $R \gg \Lambda$ можно записать в виде

$$\sqrt{\Lambda/\xi} / \ln(\Lambda/\xi) \gg \pi \sqrt{R/\Lambda} / 4 \ln(R/\Lambda).$$

При $\alpha_0 < \alpha_0^{\Omega}$ подавление сверхпроводящего параметра порядка ψ в пленке по периметру ФИ-диска оказывается неполным ($\mu < 1$) и состоит из $N = 2N_p$ сердцевин вихрей, в которых $|\psi| \approx 0$. Параметр μ в этом случае можно оценить как $\mu \sim N/N_0$, а зависимость свободной энергии от числа вихрей N записать в виде

$$\mathcal{F}(N) \simeq (1 - N/N_0)^2 \,\mathcal{F}^\alpha + N\mathcal{E}_c - \mathcal{F}_0 \,, \tag{55}$$

добавив в выражение (2) увеличение энергии на $N\mathcal{E}_c$, вызванное разрушением сверхпроводимости в

Рис. 11. Стрелками схематично показано направление смещения цепочек вихрей, приводящее к уничтожению пары вихрь-антивихрь: $N_p = 4 \rightarrow 3$

сердцевине вихрей. Здесь $N_0 = \pi R/\xi$ — максимально допустимое число вихрей, которых можно разместить на периметре диска при среднем расстоянии 2ξ друг от друга. Минимум свободной энергии (55) $d\mathcal{F}(N)/dN = 0$ определяет зависимость числа вихрей N от параметра α_0 и радиуса диска R:

$$N = \frac{N_0}{2} \left[1 + \sqrt{1 - 1/2\alpha_0^2 R^2 \eta(R/\Lambda)} \right], \qquad (56)$$

где функция $\eta(\rho)$ определяется выражением (24). При фиксированных радиусе диска R и параметре α_0 множитель η определяет зависимость числа вихрей N от зависящей от температуры эффективной глубины проникновения Л. С увеличением силы СО-взаимодействия ε_0 , обменного поля h и радиуса ФИ-диска число вихрей N монотонно растет, приближаясь к своему максимуму N_0 , при котором коры соседних вихрей практически сливаются, формируя в сверхпроводящей пленке распределенную особенность в форме кольца, где $|\psi| = 0$. Полное подавление сверхпроводящего параметра порядка в пленке по периметру ФИ-диска означает формирование слабой связи в этой области. Возникающая в сверхпроводящей пленке структура напоминает кольцевой джозефсоновский SNS-переход, барьер в котором представляет собой окружность, разделяющую внутренний (область под ФИ-диском) и внешний сверхпроводящие электроды [69–71]. Поскольку область слабой связи в кольцевом переходе со всех сторон окружена сверхпроводником, полный магнитный поток, захваченный в таком переходе, должен быть кратным кванту потока Φ_0 или отсутствовать, что с очевидностью выполняется в рассматриваемом случае.

Соотношение (56) позволяет качественно проследить, каким образом меняется структура вихревого состояния при изменении температуры. До настоящего времени рассматривался случай низких температур T, при которых появление спонтанного сверхтока и вихрей происходит на фоне уже развитой сверхпроводимости. Для $T \lesssim T_c$ сверхпроводимость и экранирующие свойства оказываются слабыми $R/\Lambda(T) \ll 1$, а параметр $\eta \approx 0.25$. В этих условиях при $\Lambda(T) \gg R \gg \xi(T)$ и $\alpha_0 \gtrsim \alpha_0^{\Omega}$ в соответствии с (56) у границы ФИ-диска в пленке формируются плотные цепочки из $N_p \approx N_0/2$ вихрей и антивихрей. С понижением температуры эффективная глубина проникновения $\Lambda(T)$ и параметр η уменьшаются, что в соответствии с (56) означает уменьшение числа вихрей (антивихрей) у границы. Учитывая, что смещению вихрей из области $r \simeq R \pm \xi$ препятствуют сильные потенциальные барьеры, создаваемые спонтанным током $\mathbf{g}^{\alpha}(\mathbf{r})$, уменьшение $\Lambda(T)$ сопровождается увеличением угла θ_v , соответствующего равновесной конфигурации вихрей (см. рис. 8b и 9b), и последующей аннигиляцией пары вихрьантивихрь в области $\theta = \pm \pi/2$. На рис. 11 схематично показано смещение вихрей и уничтожение пары вихрь-антивихрь у одного из полюсов ФИ-диска $(\theta = \pi/2)$ при понижении температуры T.

6. ЗАКЛЮЧЕНИЕ

В данной работе исследовано влияние СО-взаимодействия на границе ферромагнитного изолятора в форме диска и тонкой пленки синглетного сверхпроводника на возникновение в пленке спонтанных сверхпроводящих токов и вихрей Пирла, если радиус диска R сравним с эффективной глубиной проникновения магнитного поля Л, а внешнее магнитное поле отсутствует. В этих условиях (при $R \sim \Lambda$) становится существенным фактор экранировки магнитного поля, создаваемого сверхтоком и вихрями в пленке. В лондоновском приближении получены аналитические решения, описывающие распределение спонтанного сверхтока в пленке и созданного им магнитного поля. На границе области, занятой ФИ-диском, нормальная к плоскости пленки компонента поля возрастает, а тангенциальная к границе компонента сверхтока изменяет своё направление на противоположное. Такое характерное поведение сверхтока и поля по периметру диска свидетельствует о возможности подавления здесь сверхпроводящего параметра порядка даже при низких температурах, далеких от критической T_c , и появления

в этой области вихрей Пирла. Этот механизм генерации вихрей в гибридных ФС-структурах с неоднородным обменным (или зеемановским) полем в присутствии СО-взаимодействия, предложенный в [44, 46], был обобщен здесь для случая $R \sim \Lambda$, когда наряду с экранировкой существенным фактором является дискретность вихрей. Появление вихрей в пленке на границе области, занятой ФИ-диском, становится возможным уже при относительно слабых СО-взаимодействии и спиновом расщеплении, когда характерная длина $l_{\alpha}=\alpha_0^{-1}\sim\Lambda$ заметно превышает сверхпроводящую длину когерентности ξ , а возникающий в такой гибридной структуре спонтанный сверхток g^{α} существенно меньше тока распаривания g^d. Были найдены оптимальные конфигурации вихрей, состоящие из нескольких (N_p = 1-3) пар вихрьантивихрь, свободная энергия \mathcal{F} которых принимает минимальное значение при заданных параметрах ФС-структуры и силы СО-связи. В предельном случае сильной CO-связи $\xi \ll l_{\alpha} \lesssim \sqrt{R\xi}$ найдена структура вихревого источника, в присутствии которого спонтанный ток в значительной степени подавлен или отсутствует. Данная вихревая структура характеризуется распределенной особенностью, расположенной на периметре диска, где сверхпроводящий параметр порядка должен быть равен нулю.

Благодарности. Автор благодарит А.И. Буздина и А.С. Мельникова за полезные обсуждения.

Финансирование. Работа выполнялась при финансовой поддержке Российского научного фонда (грант # 20-12-00053).

ЛИТЕРАТУРА

- 1. R. Holm and W. Meissner, Z. Physik 74, 715 (1932).
- 2. Д. Сан-Жам, Г. Сарма, Е. Томас, *Сверхпроводи*мость второго рода, Мир, Москва (1970), с.198.
- 3. A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
- 4. Ю.А. Изюмов, Ю.Н. Прошин, М.Г. Хусаинов, УФН 172, 113 (2002).
- F. S. Bergeret, A. F. Volkov, K. B. Efetov, Rev. Mod. Phys. 77, 1321 (2005).
- 6. M. Eschrig, Rep. Prog. Phys. 78, 10450 (2015).
- 7. J. Linder and J.W.A. Robinson, Nature Phys. 11 307 (2015)

- 8. И.А. Гарифуллин, УФН 176, 676 (2006)
- 9. А.С. Мельников, С.В. Миронов, А.В. Самохвалов, А.И. Буздин, УФН, (в печати)
- 10. V. M. Edelstein, Phys. Rev. Lett. 75, 2004 (1995).
- L. P. Gor'kov and E. I. Rashba, Phys. Rev. Lett. 87, 037004 (2001).
- 12. V. M. Edelstein, Phys. Rev. B 67, 020505 (2003).
- 13. F. S. Bergeret and I. V. Tokatly, Phys. Rev. Lett. 110, 117003 (2013).
- **14**. Е.И. Рашба, ФТТ **2** (6) 1224 (1960);
- 15. V. Mineev and M. Sigrist, Basic Theory of Superconductivity in Metals Without Inversion Center Springer, New York (2012).
- 16. A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962).
- 17. B.S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962).
- Yu. N. Ovchinnikov, Int.J.Mod.Phys.B 30, 165183 (2016); XEOT P 150, 963 (1916).
- 19. G. Zwicknag, S. Jahns and P. Fulde, J. Phys. Soc. Jpn 86, 083701 (2017).
- 20. L. A. B. Olde Olthof, J. R. Weggemans, G. Kimbell, J. W. A. Robinson, and X. Montiel, Phys. Rev. B 103, L020504 (2021).
- **21**. А. И. Ларкин, Ю. Н. Овчинников ЖЭТФ, **47**, 1136 (1964)
- 22. P. Fu1de, R. A. Ferre1l, Phys. Rev. A135 550 (1964)
- V. Barzykin, L.P. Gor'kov, Phys. Rev. Lett. 89, 227002 (2002).
- 24. F. Dolcini, M. Houzet, J. S. Meyer, Phys. Rev. B 92, 035428 (2015)
- 25. А.Ю. Китаев, УФН 171, приложение к № 10 (2001).
- 26. J. Alicea, Rep. Prog. Phys. 75, 076501 (2012)
- 27. P. M. Tedrow, J. E. Tkaczyk, and A. Kumar, Phys. Rev. Lett. 56, 1746 (2086).
- 28. T. Tokuyasu, J. A. Sauls, and D. Rainer, Phys. Rev. B 38, 8823 (1988).
- 29. М.Г. Хусаинов, ЖЭТФ 109, 524 (1996)
- 30. V.O. Yagovtsev, N.A. Gusev, N.G. Pugach and M. Eschrig, Supercond. Sci. Technol. 34, 025003 (2021).

- A. Hijano, S. Ilic, M. Rouco, C. Gonzalez-Orellana, et al., Phys. Rev. Research 3 023131 (2021).
- 32. X. Hao, J. S. Moodera and R. Meservey, Phys. Rev. B 42, 8235 (1990).
- 33. E. Strambini, V.N. Golovach, G. De Simoni, J.S. Moodera, F.S. Bergeret, and F. Giazotto, Phys. Rev. Materials 1, 054402 (2017).
- 34. F. S. Bergeret, M. Silaev, P. Virtanen and T. T. Heikkilä, Rev. Mod. Phys. 90, 041001 (2018).
- 35. T. T. Heikkilä, M. Silaev, P. Virtanen and F.S. Bergeret, Prog. Surface. Science, 94, 100540 (2019).
- **36**. В. М. Эдельштейн, ЖЭТФ 95, 2151 (1989);
- 37. S. Mironov, A. Buzdin, Phys. Rev. Lett. 118, 077001 (2017)
- Zh. Devizorova, A. V. Putilov, I. Chaykin, S. Mironov and A. I. Buzdin, Phys. Rev. B 103, 064504 (2021)
- 39. S. S. Pershoguba et al., Phys. Rev. Lett. 115, 116602 (2015)
- **40**. A. G. Mal'shukov Phys. Rev. B **93**, 054511 (2016).
- 41. J. Baumard, J. Cayssol, F.S. Bergeret, and A. Buzdin, Phys. Rev. B 99, 014511 (2019).
- 42. J. W. A. Robinson, A. V. Samokhvalov, and A. I. Buzdin, Phys. Rev. B, 99 180501(R) (2019)
- 43. J. Pearl, Appl. Phys. Lett. 5, 65 (1964).
- 44. L. A. B. Olde Olthof, X. Montiel, J. W. A. Robinson, A. I. Buzdin, Phys. Rev. B 100, 220505(R) (2019).
- 45. A.G. Mal'shukov, Phys. Rev. B 101, 134514 (2020)
- 46. A.G. Mal'shukov, Phys. Rev. B 102 144503 (2020).
- 47. P.G. de Gennes, Phys. Lett. 23, 10 (1966).
- 48. X. Hao, J. S. Moodera, and R. Meservey, Phys. Rev. Lett. 67, 1342 (1991).
- 49. F. S. Bergeret, A. F. Volkov, K. B. Efetov, Phys. Rev. B 69, 174504 (2004).
- 50. M. Houzet and J. S. Meyer, Phys. Rev. B 92, 014509 (2015)
- 51. A. A. Kopasov and A. S. Mel'nikov, Phys. Rev. B 105, 214508 (2022).
- 52. V. P. Mineev and K. V. Samokhin, Phys. Rev. B 78, 144503 (2008)
- 53. V. M. Edelstein, Phys. Rev. B 103, 094507 (2021).
- 54. V. M. Edelstein, J. Phys. Condens. Matter, 8, 339 (1996)

10*

- 55. K. V. Samokhin, Phys. Rev. B 70, 104521 (2004)
- 56. R. P. Kaur, D. F. Agterberg, M. Sigrist, Phys. Rev. Lett. 94 137002 (2005)
- 57. O. Dimitrova, M.V. Feigel'man, Phys. Rev. B 76, 014522 (2007).
- 58. В.П. Минеев, К.В. Самохин, ЖЭТФ 105, 747 (1994) [Sov. Phys. JETP 78, 401 (1994)].
- 59. D.F. Agterberg, Physica C 387, 13 (2003).
- 60. A.I. Buzdin and H. Kachkachi, Phys. Lett. A 225, 341 (1997).
- S. Mironov, A. Mel'nikov and A. Buzdin, Phys. Rev. Lett. 109, 237002 (2012).
- 62. S. V. Mironov, D. Yu. Vodolazov, Y. Yerin, A. V. Samokhvalov, A. S. Mel'nikov and A. Buzdin, Phys. Rev. Lett. 121 077002 (2018)
- 63. D.F. Agterberg and R.P. Kaur, Phys. Rev. B 75, 064511 (2007).

- **64**. А. А. Абрикосов, *Основы теории металлов*, Hayка, Москва (1987)
- **65**. J.B. Ketterson and S.N. Song, Superconductivity, Cambridge, University Press (1999).
- 66. A. Pal, and M. G. Blamire, Phys. Rev. B 92, 180510 (2015)
- 67. Y. M. Shukrinov, A. Mazanik, I. R. Rahmonov, A. E. Botha, and A. Buzdin, Europhys. Lett. 122, 37001 (2018).
- 68. G.P. Malik, J. Modern Phys. 8, 99 (2017)
- 69. R. H. Hadfield, G. Burnell, D.-J. Kang, C. Bell, and M. G. Blamire, Phys. Rev. B 67, 144513 (2003).
- 70. J.R. Clem, Phys. Rev. B 82, 174515 (2010)
- 71. S. Matsuo, M. Tateno, Y. Sato , et al., Phys. Rev. B 102, 045301 (2020)