СТРУКТУРНЫЙ БЕСПОРЯДОК, ТЕПЛОЕМКОСТЬ И МАГНИТНЫЕ ПЕРЕХОДЫ В Cu₂FeBO₅

Ю. С. Гохфельд^{а*}, Н. В. Казак^{а**}, Н. А. Бельская^b, М. С. Молокеев^{a,c}, И. А. Гудим^a,

О. А. Кондратьев^d, Е. В. Еремин^{a,c}, Ю. В. Князев^a, Д. А. Великанов^a,

С. Г. Овчинников а,с

^а Институт физики им. Л. В. Киренского ФИЦ КНЦ Сибирского отделения Российской академии наук 660036, Красноярск, Россия

^b Физико-технический институт им. А. Ф. Иоффе Российской академии наук 194021, Санкт-Петербург, Россия

> ^с Сибирский федеральный университет 660041, Красноярск, Россия

^d Национальный исследовательский центр «Курчатовский институт» 123182, Москва, Россия

> Поступила в редакцию 30 марта 2023 г., после переработки 3 июня 2023 г. Принята к публикации 4 июня 2023 г.

Методом спонтанной кристаллизации из раствора-расплава получены монокристаллы людвигита Cu_2FeBO_5 . С помощью рентгеновской дифракции кристаллическая структура решена в деталях. Катионы структурно-разупорядочены в позициях M2, M3 и M4. Атомы кислорода разупорядочены в одной из пяти неэквивалентных позиций (O4). Мессбауэровские исследования показали, что ионы Fe^{3+} занимают четыре неэквивалентные позиции, связанные с различным искажением координационных октаэдров. В интервале температур $40 \text{ K} \leqslant T \leqslant 300 \text{ K}$ спектры представляют собой сумму квадрупольных дублетов. Измерения статической намагниченности выявили две магнитные особенности при $T_1 = 35 \text{ K}$ и $T_2 = 20 \text{ K}$ и спин-стекольные эффекты. Измерения теплоемкости в интервале 4-300 K не обнаружили аномалий, связанных с магнитными переходами.

Статья для специального выпуска ЖЭТФ, посвященного 95-летию Л. А. Прозоровой

DOI: 10.31857/S0044451023100103 **EDN:** XMUSFX

1. ВВЕДЕНИЕ

Исследования низкомерных магнетиков по праву считаются одним из центральных разделов магнетизма, в развитие которого большой вклад внесла Людмила Андреевна Прозорова [1–3]. Настоящая работа посвящена изучению оксиборатов с пониженной размерностью магнитной подсистемы. Аномальное поведение намагниченности, спонтанная поляризация, слабый ферромагнетизм, структурные, спиновые и электронные переходы и другие кооперативные явления определяют растущий научный интерес к данным материалам.

В оксиборатах анионная подсистема состоит из «связанных» атомов кислорода, принадлежащих бор-кислородной группе, и «свободных» атомов кислорода. Сильная гибридизация O(2p)–B(2p) внутри бор-кислородных комплексов BO_3 или BO_4 обеспечивает структурное упорядочение в связанной анионной подсистеме. В то же время наличие свободных атомов кислорода открывает возможность для структурного разупорядочения и связанных с ними эффектов (структурные и сегнетоэлектрические фазовые переходы, катион-анионная проводимость

^{*} E-mail: yugo@iph.krasn.ru

^{**} E-mail: nat@iph.krasn.ru

	M1	M2	M3	M4
Cu_2GaBO_5 [4]	Cu(100 %)	${\rm Cu}(34\%) + {\rm Ga}(66\%)$	Cu(100%)	Cu(29%) + Ga(71%)
Cu_2AlBO_5 [5]	${\rm Cu}(86\%) + {\rm Al}(14\%)$	Cu(34%) + Al(66%)	$\operatorname{Cu}(88\%) + \operatorname{Al}(12\%)$	${\rm Cu}(33\%) + {\rm Al}(67\%)$
Cu_2MnBO_5 [6]	$\mathrm{Cu}(91\%) + \mathrm{Mn}(9\%)$	${\rm Cu}(93\%) + {\rm Mn}(7\%)$	Cu(89%) + Mn(11%)	Cu(12%) + Mn(88%)
Cu_2FeBO_5 [4]	${ m Cu}(100\%)$	Cu(60%) + Fe(40%)	${ m Cu}(100\%)$	Cu(20%) + Fe(80%)
Ni_2AlBO_5 [7]	Ni(100%)	Ni(50%) + Al(50%)	$\operatorname{Ni}(100\%)$	$\operatorname{Ni}(25\%) + \operatorname{Al}(75\%)$
Co_2AlBO_5 [8]	$\operatorname{Co}(81\%) + \operatorname{Al}(19\%)$	$\operatorname{Co}(55\%) + \operatorname{Al}(45\%)$	Co(70%) + Al(30%)	$\operatorname{Co}(46\%) + \operatorname{Al}(54\%)$
Co_2GaBO_5 [9]	$\operatorname{Co}(100\ \%)$	${\rm Co}(84\%)+{\rm Ga}(16\%)$	$\operatorname{Co}(100\%)$	Co(46%) + Ga(54%)

Таблица 1. Катионный беспорядок в неэквивалентных позициях решетки людвигита

и т. д.).

Людвигиты, имеющие обшую формулу $Me_2^{2+}Me^{3+}(BO_3)O_2$, относятся к семейству оксиборатов, в которых эффекты анионного и катионного разупорядочения существенно меняют параметры магнитной и электронной подсистем. Материалы кристаллизуются в ромбической симметрии (пр. гр. Pbam). Металлические ионы координированы шестью атомами кислорода и занимают четыре неэквивалентные кристаллографические позиции 2a, 2b, 4g, 4h, общепринятая нумерация которых М1, М2, М3, М4. В подавляющем большинстве гетерометаллических людвигитов позиции M2 и M4 являются структурно-разупорядоченными (табл. 1). Наивысшая степень структурного беспорядка наблюдается в позиции М2 и в некоторых случаях достигает 100 %.

В людвигитах катионное распределение является фактором, влияющим на способность системы достичь дальнего магнитного порядка. В Cu₂MnBO₅ магнитными и нейтронографическими методами обнаружен ферримагнитный порядок спинов ниже $T_N = 92$ K [6]. Соединение характеризуется умеренным катионным беспорядком (табл. 1). Спонтанная поляризация (P = 35 мкКл · м⁻² при 5 K) и несоизмеримый антиферромагнитный порядок ниже $T_N = 120$ К найдены в катионно-упорядоченном Cu₂CrBO₅ [10]. В соединении Cu₂GaBO₅ наблюдался сложный неколлинеарный антиферромагнитный порядок при $T_N = 4.1$ K [11]. Низкая температура магнитного перехода приписана влиянию разупорядоченной катионной подрешетки.

Данная работа посвящена исследованию смешанного медно-железного людвигита Cu_2FeBO_5 . Кристаллическая структура впервые была решена в работе [4]. Соединение обладает моноклинной симметрией (пр. гр. $P2_1/c$). Понижение симметрии вызвано кооперативным эффектом Яна–Теллера ионов Cu^{2+} . Обнаружен аномально высокий эквивалентный параметр атомного смещения $U_{eq}({
m O4}) = 0.034(1) \,{
m \AA}^2$ и установлен факт катионного разупорядочения по позициям M2 и M4 (табл. 1). Позднее в работах [12,13] были проведены исследования магнитных свойств. Измерения динамической магнитной восприимчивости и эффекта Мессбауэра показали наличие трех магнитных аномалий [12]: при $T_N^{\text{Fe}} = 63 \,\text{K}$ происходит замораживание магнитных моментов ионов железа; при $T_N^{Cu} = 35.7 \,\mathrm{K}$ устанавливается антиферромагнитный порядок спинов в медной подсистеме; при $T = 20 \,\mathrm{K}$ происходит связывание магнитных моментов Fe³⁺ и Cu²⁺ в единую трехмерную сеть и формирование состояния спинового стекла. Опираясь на результаты измерений магнитных и резонансных свойств, а также мессбауэровских исследований, в работе [13] было установлено, что Cu₂FeBO₅ испытывает переход в антиферромагнитное состояние при $T_N = 32 \, \text{K}$. На основе анализа квадрупольных расщеплений мессбауэровских спектров получены следующие распределения катионов Cu : Fe = M1(0.40 : 0.10), M2(0.30 : 0.20), M3, M4(0.30 : 0.70) [12] μ Cu : Fe = M1(0.26 : 0.24), M2(0.01:0.49), M3(0.75:0.25), M4(0.99:0.01) [13]. Из сравнения заселенностей следует, что распределение металлических ионов сильно зависит от способа синтеза образцов.

Целью настоящего исследования стало изучение структурных и магнитных свойств монокристаллов Cu₂FeBO₅, полученных методом спонтанной кристаллизации из раствора-расплава на основе тримолибдата висмута. Элементный анализ образцов показал высокую степень катионной стехиометрии. Выполнены измерения монокристальной дифракции, эффекта Мессбауэра, намагниченности и теплоемкости. Установлено, что ионы железа, находясь в высокоспиновом трехвалентном состоянии, занимают преимущественно позиции M2 и M4, создавая значительный катионный беспорядок. Этот беспорядок, в свою очередь, вызван разупорядочением анионной позиции O4. В соединении наблюдаются два магнитных перехода при $T_1 = 35 \,\mathrm{K}, T_2 = 20 \,\mathrm{K}$ и дивергенция намагниченностей в режимах охлаждения в поле (FC) и без поля (ZFC) при $T < T_1$. Измерения теплоемкости не обнаружили особенностей, связанных с установлением дальнего магнитного порядка, что может быть следствием фрустраций обменных взаимодействий, вызванных катионным беспорядком.

2. ЭКСПЕРИМЕНТАЛЬНЫЕ И АНАЛИТИЧЕСКИЕ МЕТОДЫ

Монокристаллы людвигита Cu₂FeBO₅ были выращены из раствора-расплава в системе

68% macc. (Bi₂Mo₃O₁₂ + Na₂B₄O₇ + CuO)

32% macc. $(4CuO + Fe_2O_3 + B_2O_3)$.

Исходные реактивы общей массой 100 г сплавлялись в платиновом тигле объемом 100 см³ при температуре 1100 °С. После трехчасовой выдержки при T = 1000 °С раствор-расплав охлаждался до 925 °С и далее медленно со скоростью dT/dt = 1 °С/сут в течение двух суток. Затем раствор-расплав сливался. Выросшие на стенках тигля монокристаллы очищались путем травления в 20-процентном водном растворе азотной кислоты. Монокристаллы в виде прямоугольных параллелепипедов имели размеры до $1.0 \times 10 \text{ мм}^3$.

Стехиометрия образца определялась методом микрофлуоресцентного анализа с использованием флуоресцентного спектрометра Bruker M4 Tornado. Режим работы спектрометра: анод Rh; ускоряющее напряжение 50 кВ; ток 300 мкА; фокусировка поликапиллярной линзой, формирующей пятно засветки диаметром 25 мкм. Проводились как интегральные измерения флуоресцентных спектров с картированием всей поверхности образца с шагом 35 мкм и временем накопления в точке 80 мс с последующим усреднением, так и в одной точке образца со временем накопления 150 с. Для получения количественных данных усредненные по поверхности образца и измеренные в одной точке спектры анализировались с использованием программного обеспечения Tornado M4. С учетом предварительной калибровки спектрометра погрешность определения содержания основных элементов составляет около 0.5%, состав примесей с содержанием меньше 0.5% определяется качественно.

Интенсивности от монокристалла Cu_2FeBO_5 размером $0.1 \times 0.2 \times 0.3 \text{ мм}^3$ были измерены при T = 296(2) K с использованием монокристального дифрактометра SMART APEX II (Bruker AXS, аналитическое оборудование Красноярского центра коллективного пользования ФИЦ КНЦ СО РАН), оснащенного ССД-детектором, графитовым монохроматором и MoK_{α} -излучением. Матрица ориентации и параметры ячейки определены и уточнены для набора из 7361 отражений. Пространственная группа определялась из статистического анализа интенсивностей всех отражений. Поглощение учтено с помощью программы SADABS. Структура расшифрована прямыми методами по пакету SHELXS и уточнена в анизотропном подходе по программе SHELXL [14]. Структурные тесты на наличие недостающих элементов симметрии и возможных пустот были проведены с использованием программы PLATON [15]. Кристаллографические данные депонированы в Кембриджском центре кристаллографических данных (CSD No. 2252248).

Анализ локальных искажений координационных октаэдров проведен в рамках модели точечных зарядов путем расчета главной компоненты тензора градиента электрического поля (ГЭП) [16]

$$V_{zz} = 2e \sum_{i} \frac{3\cos^2 \varphi_i - 1}{r_i^3},$$
 (1)

где φ_i — угол между главной осью октаэдра и направлением на *i*-й атом кислорода, r_i — соответствующее межионное расстояние катион–анион.

Валентные состояния ионов железа определены методом сумм валентных связей [17]:

$$v_i = \sum_j \exp\frac{R_0 - r_{ij}}{b},\tag{2}$$

где r_{ij} — длина ij-связи [Å], параметр $R_0 = 1.759$ Å и $R_0 = 1.734$ Å для Fe³⁺ и Fe²⁺ соответственно, постоянная b = 0.37 Å.

Мессбауэровские спектры исследуемого образца получены на спектрометре МС-1104Ем в геометрии пропускания с радиоактивным источником Co⁵⁷(Rh) при температурах 4, 40, 300 К. Для низкотемпературных измерений использовался криостат замкнутого цикла Гиффорда – МакМагона в геометрии пропускания. Изомерные сдвиги мессбауэровских спектров измеряли относительно стандартного металлического поглотителя α -Fe. Сверхтонкие параметры получены методом наименьших квадратов в предположении лоренцевой формы линий. Обработка была выполнена в два этапа. На первом этапе определялись возможные неэквивалентные позиции железа в образце с помощью расчета распределений вероятностей сверхтонких полей. В соответствии с полученными результатами формировался предварительный модельный спектр. На следующем этапе модельный спектр подгонялся к экспериментально-

Элемент	Атомный номер	Серия	Кол-во	Bec. $\%$	Норм. вес. %	Норм. ат. %
Mn	25	К-серия	17888	0.023442	0.02385192	0.02648106
Ca	20	К-серия	1270	0.006286	0.00639568	0.00973342
Cu	29	К-серия	36584050	68.47264	69.6703074	66.8720291
Fe	26	К-серия	25734015	29.77858	30.299445	33.0917564
Сумма				98.28095	100	100

Таблица 2. Результаты рентгено-флуоресцентного анализа поверхности образца (map integrated spectrum)

Рис. 1. (В цвете онлайн) Изображение монокристалла Cu₂FeBO₅ (*a*) и соответствующее картирование Cu (*b*) и Fe (*c*) по поверхности

му при варьировании всего набора сверхтонких параметров методом наименьших квадратов в линейном приближении.

Измерение теплоемкости выполнены на монокристалле массой 10.66 мг с использованием коммерческой платформы PPMS-9 (Quantum Design) (оборудование Красноярского центра коллективного пользования ФИЦ КНЦ СО РАН). Измерения намагниченности проведены с использованием SQUID-магнетометра [18, 19] в интервале температур T = 4-300 К в поле 200 Э в режимах FC и ZFC. С целью минимизировать влияние магнитной анизотропии, измерения выполнены на порошке из монокристаллов общей массой 162 мг.

3. РЕЗУЛЬТАТЫ

Изображения элементного картирования Си и Fe, полученные методом микрорентгеновской флуоресцентной спектроскопии, а также нормированные атомные концентрации образца Cu₂FeBO₅ приведены на рис. 1 и в табл. 2. Анализ показал однородность распределения металлических ионов и высокую стехиометрию образца: отношение металлических атомов составляет Cu : Fe = 2.02 ± 0.02 . Основные кристаллографические параметры и результаты уточнения структур, а также значения координат, заселенностей позиций, эквивалентных тепловых параметров и основные величины межатомных расстояний приведены в табл. 3–6. Параметры решетки a = 3.1217(3) Å, b = 12.0292(13) Å, c = 9.4813(10) Å, $\beta = 97.045(2)^{\circ}$, V = 353.35(6) Å³ находятся в хорошем согласии с данными работы [4].

Атомы металлов имеют октаэдрическое кислородное окружение и занимают узлы M1 (2b), M2 (2c), M3 (4e) и M4 (4e) (рис. 2a). Атомы кислорода O2, O3 и O5 координируют бор, формируя изолированные планарные треугольные анионы $(BO_3)^{3-}$. Оставшиеся два атома, O1 и O4, являются «свободными» и координируют металлические ионы. В результате уточнения установлено, что позиция O4, для которой ранее был обнаружен большой тепловой параметр U_{eq} [4], расщепляется на две, O4A и O4B, с межионным расстоянием 0.4604(56) Å.

Атомы Си и Fe структурно-разупорядочены в позициях M2, M3, M4 с вероятностями Cu : Fe = 0.496 : 0.504, 0.926 : 0.074, 0.328 : 0.672 соответственно. Таким образом, катионная подсистема Cu₂FeBO₅ представлена двумя подрешетками. Первая сформирована ионами Cu²⁺ в позициях

Рис. 2. (В цвете онлайн) a) Кристаллическая структура Cu_2FeBO_5 в проекции на bc-плоскость. Симметрийно неэквивалентные позиции, занятые металлическими ионами, обозначены М1, М2, М3, М4. Неэквивалентные кислородные позиции обозначены как О1, О2, О3, О4, О5. Желтые треугольники — бор-кислородные группы. b и c) Структурно-упорядоченная и структурно-разупорядоченная магнитные подсистемы, сформированные ионами Cu^{2+} (позиции М1 и M2) и Cv^{2+}/Dr^{3+} (M2 и M4) всегователения

M1 и M3) и $\mathrm{Cu}^{2+}/\mathrm{Fe}^{3+}$ (M2 и M4) соответственно

М1 и М3 и характеризуется высокой степенью структурного порядка (рис. 2*b*). Вторая состоит из ионов Cu^{2+} и Fe³⁺, структурно-разупорядоченных по позициям М2 и М4 (рис. 2*c*). Октаэдры М2O₆ и М4O₆, соединяясь по общему ребру (через атомы O4), формируют триаду М4–М2–М4 с наименьшим межионным расстоянием.

Расщепление кислородной позиции О4 приводит к изменению локального окружения переходных металлов и искажению связанных с ними октаэдров MeO₆. Разупорядочение кислородной позиции может носить как динамический, так и статический характер. Для статически разупорядоченной позиции O4 имеются два набора локальных окружений для каждого из металлических узлов (M2A, M2B, M3A, M3B, M4A и M4B), в то время как для динамического беспорядка появляется большое число неэквивалентных окружений, характеризующихся разной степенью искажения координационных октаэдров.

Сравнение величин V_{zz} показывает, что наибольшие локальные искажения координационных октаэдров соответствуют статически разупорядоченной анионной подсистеме. Такое разупорядочение можно рассматривать как случайное распределение единичных ячеек, в которых атомы кислорода упорядочены по позиции либо О4А, либо О4В. Выраженное смещение атомов О4В в направлении атома в позиции М4 приводит к значительному сокращению соответствующей длины связи M4-O4B = 2.0146(35) Å и одновременному удлинению связи M2–O4B = 2.5132(39) Å. Обратный эффект наблюдается для атомов кислорода, занимающих позицию О4А, которые смещены в направлении атома в позиции М2, вызывая удлинение связи M4-O4A = 2.6489(40) Å. Наиболее регулярное кислородное окружение возникает на узлах М2А и М4В (табл. 7). Этим же узлам отвечает наименьшая длина связи и, следовательно, наибольшее зарядовое состояние ионов Fe (2.84 + и 2.73 +). Самые сильные локальные искажения возникают на узлах М1, М3А и M3B, занятых ионами Cu²⁺. Симметричное окружение иона Cu²⁺ с вырожденным основным состоянием не соответствует минимуму энергии. Вырождение снимается эффектом Яна – Теллера. Аномальное увеличение длин связи и высокие значения V_{zz} на узлах М2В и М4А с большой вероятностью могут быть отнесены ионам Cu²⁺ в этих позициях. Из проведенного анализа следует, что единичная ячейка может содержать два типа триад: Fe(4A)-Fe(2A)-Cu(4A) и Fe(4B)–Cu(2B)–Fe(4B) (рис. 3). Случайное распределение таких триад в решетке создает эффект катионного беспорядка с факторами заполнения Cu2 : Fe2 = 0.5 : 0.5 и Cu4 : Fe4 = 0.25 : 0.75, которые близки к экспериментально обнаруженным заселенностям (0.496 : 0.504 и 0.328 : 0.672 соответственно).

Мессбауэровский спектр Cu_2FeBO_5 (рис. 4a), измеренный при комнатной температуре, может быть удовлетворительно аппроксимирован суммой четырех квадрупольных дублетов (табл. 8). Сверхтонкие параметры хорошо согласуются с данными предыдущих исследований [12, 13]. Величины изомерных сдвигов IS = 0.356 - 0.454 мм/с характерны для ионов Fe³⁺, находящихся в высокоспиновом состоянии в октаэдрическом кислородном окружении. В отличие от рентгеновской дифракции, которая относится к интегральным методам исследования, мессбауэровская спектроскопия обладает высокой селективностью и гораздо более чувствительна к локальному окружению атомов железа. Дискретный набор квадрупольных расщеплений указывает на наличие нескольких неэквивалентных по локальному окружению позиций. Квадрупольное расщепление QS1 = 2.04 мм/c свидетельствует о том, что ионы Fe³⁺ занимают сильно искаженный октаэдрический узел. Малая площадь данной компонен-

Рис. 3. (В цвете онлайн) Координационное окружение металлических ионов в статически разупорядоченной подструктуре Cu₂FeBO₅: единичная ячейка упорядочена по кислородным позициям O4A (*a*) и O4B (*b*). Цветом показано аксиальное удлинение октаэдров

Таблица 3. Кристаллографические	данные и основные параметры	уточнения структуры Cu ₂ FeBO ₅

Химическая формула	Cu ₂ FeBO ₅
Молекулярный вес	273.735
Температура, К	296(2)
Пространственная группа, Z	P21/c, 4
$a, m \AA$	3.1217(3)
$b, \mathrm{\AA}$	12.0292(13)
$c, \mathrm{\AA}$	9.4813(10)
β	$97.045(2)^{\circ}$
$V, \mathrm{\AA}^3$	353.35(6)
$ ho_{calc},$ γ/cm 3	5.146
μ , mm ⁻¹	15.870
Измеренные отражения	7361
Независимые отражения	1964
Отражения с $F > 4\sigma(F)$	1913
$2 heta_{max}$	78.058°
h,k,l-пределы измерений	$-5 \leqslant h \leqslant 5; -20 \leqslant k \leqslant 20; -16 \leqslant l \leqslant 16$
R_{int}	0.0460
Обработка F^2	$w = 1/[\sigma^2(F_0^2) + (0.0221P)^2 + 0.3824P],$
	где $P = \max(F_0^2 + 2F_c^2)/3$
Число параметров обработки	93
$R1[F_0 > 4\sigma(F_0)]$	0.0286
wR2	0.0709
G_{oof}	1.243
$\Delta ho_{max}, e/{ m \AA}^3$	1.358
$\Delta ho_{min},e/{ m \AA}^3$	-1.444
$(\Delta/\sigma)_{max}$	< 0.001
Коэффициент экстинкции (SHELXL 2014/7)	0.145(5)

	x	y	z	U_{eq}	S.O.F.			
Cu1	0.5000	0.5000	0.5000	0.00664(8)	1			
Cu2	0.0000	0.5000	0.0000	0.00643(10)	0.496(13)			
Fe2	0.0000	0.5000	0.0000	0.00643(10)	0.504(13)			
Cu3	0.45983(7)	0.28020(2)	0.00811(2)	0.00713(8)	0.926(8)			
Fe3	0.45983(7)	0.28020(2)	0.00811(2)	0.00713(8)	0.074(8)			
Cu4	0.06522(8)	0.61849(2)	0.72898(3)	0.00725(8)	0.328(9)			
Fe4	0.06522(8)	0.61849(2)	0.72898(3)	0.00725(8)	0.672(9)			
В	0.9623(6)	0.36378(15)	0.7330(2)	0.0070(3)	1			
O1	0.5351(5)	0.64474(10)	0.59838(15)	0.0097(2)	1			
O2	0.9620(4)	0.46083(10)	0.65647(13)	0.0081(2)	1			
O3	0.0149(5)	0.36493(10)	0.87986(14)	0.0089(2)	1			
O4A	0.5319(12)	0.4265(3)	0.1035(4)	0.0080(4)	0.503(5)			
O4B	0.4201(12)	0.4154(3)	0.1277(4)	0.0080(4)	0.497(5)			
O5	0.9084(5)	0.23690(11)	0.16530(14)	0.0094(2)	1			

Таблица 4. Координаты атомов, параметры изотропного смещения (U_{eq}) и фактор заполнения позиций (S.O.F.) $Cu_2 FeBO_5$

Таблица 5. Параметры анизотропного смещения Cu₂FeBO₅

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
Cu1	0.00849(13)	0.00456(13)	0.00626(13)	-0.00101(7)	-0.00154(9)	0.00044(8)
Cu2	0.00819(15)	0.00445(14)	0.00623(15)	-0.00041(8)	-0.00076(10)	0.00096(8)
Fe2	0.00819(15)	0.00445(14)	0.00623(15)	-0.00041(8)	-0.00076(10)	0.00096(8)
Cu3	0.00986(11)	0.00403(11)	0.00664(11)	-0.00085(5)	-0.00239(7)	0.00098(6)
Fe3	0.00986(11)	0.00403(11)	0.00664(11)	-0.00085(5)	-0.00239(7)	0.00098(6)
Cu4	0.00954(12)	0.00457(11)	0.00692(11)	-0.00110(6)	-0.00189(7)	0.00030(6)
Fe4	0.00954(12)	0.00457(11)	0.00692(11)	-0.00110(6)	-0.00189(7)	0.00030(6)
В	0.0079(6)	0.0056(6)	0.0070(6)	0.0007(5)	-0.0010(5)	-0.0003(5)
01	0.0129(5)	0.0044(5)	0.0105(5)	-0.0002(4)	-0.0042(4)	0.0000(4)
O2	0.0113(5)	0.0041(4)	0.0079(5)	0.0005(3)	-0.0024(4)	-0.0008(3)
O3	0.0131(5)	0.0063(5)	0.0065(5)	-0.0001(3)	-0.0021(4)	0.0014(4)
O4A	0.0102(13)	0.0053(8)	0.0075(11)	-0.0001(7)	-0.0024(7)	0.0007(8)
O4B	0.0102(13)	0.0053(8)	0.0075(11)	-0.0001(7)	-0.0024(7)	0.0007(8)
O5	0.0147(5)	0.0052(4)	0.0073(5)	0.0002(4)	-0.0031(4)	0.0019(4)

ты (A1 = 5%) свидетельствует о нетипичном (случайном) распределении ионов Fe³⁺ в данной позиции. Такая компонента наблюдалась ранее в спектрах Ni₂FeBO₅ (QS = 1.93 мм/c, A = 6%) [20] и Co_{3-x}Fe_xBO₅, $0.0 < x \leq 1.0$ (QS = 1.96-1.92 мм/c, A = 20-10%) [21]. Спектральная компонента D4, характеризующаяся малым квадрупольным расщеплением QS4 = 0.62 мм/c, может быть приписана ионам железа в наиболее регулярном лиганд-

ном окружении. Наиболее вероятное распределение ионов Fe³⁺ соответствует умеренно искаженным октаэдрическим узлам с квадрупольным расщеплением в интервале 0.8–1.2 мм/с. В предположении, что в магнитных диэлектриках валентный вклад в градиент электрического поля мал и лигандный вклад является основным, квадрупольное расщепление на ядрах Fe будет пропорционально главной компоненте тензора ГЭП, создаваемого атомами кислоОсновные межатомные

Cu. FoBO.

расстояния

в

Таблица

6.

Связь	Длина связи, Å				
Cu1-O1	$2 \times 1.9719(13)$				
Cu1–O2	$4 \times 1.9945(12)$				
Cu2 Fe2-O3	$2 \times 1.9881(13)$				
Cu2 Fe2-O4A/O4B	2.0253(36)/1.9575(36)				
Cu2 Fe2-O4A/O4B	$2\times 2.0571(39)/2.5132(39)$				
Cu3 Fe3-O1	1.9180(13)				
Cu3 Fe3-O3	2.0081(14)				
Cu3 Fe3-O3	2.4570(15)				
Cu3 Fe3-O4A/O4B	1.9788(36)/1.9951(37)				
Cu3 Fe3-O5	1.9853(14)				
Cu3 Fe3-O5	2.4668(16)				
Fe4 Cu4-O1	1.9670(14)				
Fe4 Cu4-O1	2.0567(16)				
Fe4 Cu4-O2	2.0295(12)				
Fe4 Cu4-O5	2.0043(14)				
$\rm Fe4 Cu4-O4A/O4B$	1.9767(36)/2.0146(35)				
$\rm Fe4 Cu4-O4A/O4B$	2.6489(40)/2.1939(40)				
B-O2	1.3745(22)				
B-O3	1.3820(23)				
B-O5	1.3713(22)				

рода в месте расположения данного иона. Используя рассчитанные величины V_{zz} для различных локальных атомных конфигураций, можно приписать спектральные компоненты кристаллографическим позициям (табл. 8). Суммарная площадь дублетов D2 (36%) и D3 (43%) близка к фактору заполнения неэквивалентной позиции M4 атомами Fe, определенному из данных рентгеновской дифракции (примерно 67%), и соответствует теоретическому заполнению данного узла при статическом беспорядке (75%).

В работе [12] сообщалось о заметном уширении мессбауэровских линий при T < 60 K, связанном с эффектами релаксации и с замораживанием магнитных моментов Fe. На рис. 4b приведен спектр Cu₂FeBO₅, измеренный при T = 40 K. В отличие от результатов работы [12], профиль исследуемого нами образца по-прежнему описывается суммой четырех компонент с заселенностями D1 : D2 : D3 : D4 = 6 : 38 : 42 : 14 и свидетельствует о парамагнитном состоянии ионов Fe³⁺ при данной температуре.

300 K Theor D2 D3 D1 D4 a) 0000000 80000000 Absorption (a.u.) 40 K Theor D2 D3 D1 b) D4 4 K Theor S1 **S2 S**3 c) -12 0 8 12 -8 -4 4 V (mm/s)

Рис. 4. Мессбауэровские спектры Cu_2FeBO_5 , измеренные при температурах 300 К (a), 40 К (b) и 4 К (c)

При температуре T = 4 К наблюдается зеемановское расщепление линий (рис. 4c). Спектр аппроксимируется суммой трех секстетов. Соотнесение компонент в магнитоупорядоченной области компонентам в парамагнитном режиме выполнено с использованием площадей. В результате секстетам S2, S3, S4 соответствуют заселенности 0.33, 0.53, 0.14. Величины IS возрастают и типичны для ионов Fe^{3+} . Величины сверхтонких полей на ядрах железа $H_{hf} = 479$ (S1), 459 (S2), 421 (S3) кЭ. Среднее сверхтонкое поле, наблюдаемое в нашем образце Cu₂FeBO₅, $\langle H_{hf} \rangle = 460 \,\mathrm{k}\Im$ близко к величине 469 кЭ, приведенной в работе [12], но значительно меньше найденных в Co₂FeBO₅ (508 кЭ) [21] или Fe₃BO₅ (500 кЭ) [22]. Последнее является признаком неполного магнитного насыщения Fe-подрешетки, связанного, вероятно, с фрустрациями обменных взаимодействий, вызванных катионным беспорядком.

Температурные зависимости намагниченности Cu₂FeBO₅, измеренные в поле 200 Э, представлены

	M1	M2A	M3A	M4A	M2B	M3B	M4B
$\langle Me-O \rangle$, Å	2.1287	2.0235	2.1357	2.1139	2.1529	2.1384	2.0443
$V_{zz},e/{ m \AA}^3$	-0.440	-0.030	-0.499	-0.271	-0.535	-0.519	-0.087
Валентное состояние Fe		2.84		2.57	2.42		2.73

Таблица 7. Средняя длина связи, главная компонента тензора ГЭП и валентное состояние ионов железа в неэквивалентных узлах решетки в $Cu_2 FeBO_5$

Таблица 8. Параметры сверхтонкой структуры $Cu_2 FeBO_5$: IS — изомерный химический сдвиг относительно α -Fe ($\pm 0.005 \text{ мм/c}$), H_{hf} — сверхтонкое поле ($\pm 3 \text{ к}$ Э), QS — квадрупольное расщепление ($\pm 0.01 \text{ мм/c}$), W — ширина линии на полувысоте ($\pm 0.01 \text{ мм/c}$), A — площадь спектральной компоненты ($\pm 3 \%$), Site — принадлежность кристаллографической позиции

T, K	Компоненты	$IS,\mathrm{mm/c}$	$H_{hf},$ кЭ	$QS,{ m mm/c}$	W, мм/с	A,%	Site
300	D1	0.454		2.04	0.63	5	3
	D2	0.356		1.20	0.37	36	4A
	D3	0.359		0.81	0.34	43	4B
	D4	0.358		0.62	0.29	16	2A
40	D1	0.475		2.74	0.92	6	
	D2	0.461		1.15	0.54	38	
	D3	0.501		0.82	0.43	42	
	D4	0.348		0.50	0.56	14	
4	S2	0.467	479	-0.02	0.66	33	
	S3	0.457	459	0	0.57	53	
	S4	0.490	421	0.00	0.42	14	

Рис. 5. Температурные зависимости намагниченности $Cu_2 FeBO_5$, измеренные в поле 200 Э в режимах FC и ZFC. На нижней вставке показана область магнитных переходов в увеличенном масштабе. Стрелки указывают на магнитные аномалии. На верхней вставке: приведена зависимость функции $(\chi - \chi_0)(T - \Theta)$ от T. Сплошная линия соответствует постоянной Кюри

на рис. 5. Максимум намагниченности наблюдается при температуре $T_1 = 35$ K, ниже которой FC- и ZFC-кривые расходятся. При $T < T_1$ FC-намагниченность стремится к постоянной величине, а ZFC-кривая показывает изменение угла наклона при $T_2 = 20$ K (нижняя вставка к рис. 5). Две особенности, подобные тем, что обнаружены в наших экспериментах, ранее наблюдались в измерениях динамической магнитной восприимчивости Cu₂FeBO₅ ($T_N^{Cu} = 35.7$ K и T = 20 K) [12]. Высокотемпературная особенность при $T_N^{Fe} = 63$ K, приписанная замерзанию магнитных моментов Fe-подсистемы [12], не обнаруживается в наших магнитных измерениях.

При высоких температурах магнитная восприимчивость подчиняется закону Кюри–Вейсса

$$\chi(T) = \chi_0 + \frac{C}{T - \Theta}.$$
(3)

где χ_0 — не зависящий от температуры вклад, C — константа Кюри, Θ — парамагнитная темпе-

Рис. 6. Температурная зависимость теплоемкости монокристалла Cu_2FeBO_5 . Сплошной линией показана аппроксимация решеточного вклада в теплоемкость. На вставке: энтропия как функция температуры

ратура Кюри. Не зависящий от температуры вклад $\chi_0 = \chi_{dia} + \chi_{VV}$ представляет сумму диамагнитного вклада, полученного путем суммирования отрицательных констант Паскаля ($\chi_{dia} = -35 \cdot 10^{-6}$, $-12 \cdot 10^{-6}$, $-10 \cdot 10^{-6} \,\mathrm{cm^3/моль}$ для $(\mathrm{BO}_3)^{3-}$, Cu²⁺, Fe³⁺ соответственно [23]) и положительного ван-флековского вклада, определенного для иона Cu²⁺ в кубическом кристаллическом поле как $\chi_{VV} \approx 50 \cdot 10^{-6} \, {\rm cm}^3$ /моль [24]. Обработка экспериментальных данных при $T > 180 \,\mathrm{K}$ с учетом вклада $\chi_0 = 0.3 \cdot 10^{-4} \, {
m cm}^3/$ моль дает большую по модулю и отрицательную по знаку температуру Кюри $\Theta = -429 \,\mathrm{K}$. Полученное значение Θ значительно выше значений, полученных другими авторами (-178 K [12] и -384 K [13]). При T < 160 K, т.е. заметно выше температуры магнитного перехода, магнитная восприимчивость отклоняется от закона Кюри-Вейсса, что свидетельствует о проявлении корреляций ближнего магнитного порядка (верхняя вставка к рис. 5). При $T < T_1$ преобладают корреляции с антиферромагнитным обменным взаимодействием. Значение константы Кюри С, приведенное на верхней вставке к рис. 5, дает величину эффективного магнитного момента $\mu_{eff} = 6.16 \, \mu_B / форм. ед.,$ которая хорошо согласуется с теоретическим значением

$$\mu_{eff} = \sqrt{2\mu_{Cu}^2 + \mu_{Fe}^2} = 6.4\,\mu_B/$$
форм. ед. (4)

в предположении высокоспиновых состояний и
онов $\mathrm{Cu}^{2+}~(S=1/2),~\mathrm{Fe}^{3+}~(S=5/2)$ и g-фактор
аg=2.

На рис. 6 приведена температурная зависимость теплоемкости монокристалла Cu_2FeBO_5 , измеренная в нулевом магнитном поле. Важным экспериментальным наблюдением является то, что магнитные переходы при T_1 и T_2 , найденные из измерений статической намагниченности, не проявляются аномалиями на температурной зависимости теплоемкости, которая представляет собой монотонно меняющуюся функцию во всем интервале измерений.

Величина теплоемкости при комнатной температуре равна 166.4 Дж/моль · К, что значительно ниже термодинамического предела Дюлонга – Пти $3Rz = 224.5 \, \text{Дж/моль} \cdot \text{K}$, где R — универсальная газовая постоянная, z — число атомов на формульную единицу. Магнитный вклад в теплоемкость получен при вычитании решеточного вклада C_{latt} , который аппроксимировался функцией Дебая – Эйнштейна. Температура Дебая определена равной $\Theta_D = 398 \pm 20 \, \text{K}$. Насыщение магнитного вклада в энтропию происходит при $T \approx 100 \, \text{K}$, $S_{mag} \approx 7 \, \text{Дж/моль} \cdot \text{K}$ (вставка к рис. 6), что значительно ниже теоретического значения

$$S_{mag} = 2R \ln(2S_{Cu} + 1) + R \ln(2S_{Fe} + 1) =$$

= 24.4 Дж/моль · К. (5)

Отсутствие аномалий, связанных с установлением дальнего магнитного порядка и малая величина S_{mag} могут свидетельствовать о наличии фрустраций обменных взаимодействий и формировании ближнего порядка при более высоких температурах.

4. ОБСУЖДЕНИЕ

Недавние эксперименты по нейтронной дифракции на Cu_2GaBO_5 обнаружили, что при $T_N = 4.1 \text{ K в}$ системе формируется соизмеримый антиферромагнитный порядок с магнитным вектором распространения $\mathbf{q}_m = (0.45, 0, -0.7)$ [11]. Магнитная подсистема состоит из двух подрешеток, первая из которых сформирована структурно-упорядоченными ионами Cu²⁺ в позициях М1 и М3, а вторая — структурно разупорядоченными ионами Cu²⁺ и Ga³⁺ в позициях М2 и М4. Магниторазбавленная подрешетка либо не участвует в антиферромагнитном упорядочении, оставаясь в парамагнитном состоянии ниже T_N , либо наследует антиферромагнитные корреляции упорядоченной подрешетки из-за малого числа обменных связей вследствие катионного беспорядка. В отсутствие внешнего поля такая неупорядоченная подрешетка не вносит существенного вклада в магнитную энергию системы, позволяя сформировать

Связь	Длина связи, Å	Связь	Длина связи, Å	Связь	Длина связи, Å
O1–Cu1	1.9719(13)	O2–Cu1	1.9945(12)	O3-Cu2 Fe2	1.9881(13)
O1–Cu3	1.9180(13)	O2–Cu1	2.4197(13)	O3–Cu3	2.0081(14)
O1-Fe4 Cu4	1.9670(14)	O2-Fe4 Cu4	2.0295(12)	O3–Cu3	2.4570(15)
O1-Fe4 Cu4	2.0567(16)	O2–B	1.3745(22)	O3–B	1.3820(23)
$\langle {f O1-Cation} angle$	1.9784	$\langle {f O2}-{f Cation} angle$	1.9546	$\langle {f O3-Cation} angle$	1.9588
O4A-Cu2 Fe2	2.0253(36)	O4B-Cu2 Fe2	1.9575(36)	O5–Cu3	1.9853(14)
O4A-Cu2 Fe2	2.0571(39)	O4B-Cu2 Fe2	2.5132(39)	O5–Cu3	2.4668(16)
O4A–Cu3	1.9788(36)	O4B-Cu3	1.9951(37)	O5-Fe4 Cu4	2.0043(14)
O4A-Fe4 Cu4	1.9767(36)	O4B-Fe4 Cu4	2.0146(35)	O5–B	1.3713(22)
O4A-Fe4 Cu4	2.6489(40)	O4B-Fe4 Cu4	2.1939(40)		
$\langle \mathbf{O4A}\text{-}\mathbf{Cation} angle$	2.1374	$\langle \mathbf{O4B-Cation} angle$	2.1349	$\langle {f O5-Cation} angle$	1.9569

Таблица 9. Длины связей в катионном окружении атомов кислорода в Cu₂FeBO₅. Жирным шрифтом показаны средние длины связей

дальний порядок в структурно- и магнитно-упорядоченной подрешетке спинов Cu^{2+} , что подтверждается наблюдением λ -аномалии на температурной зависимости теплоемкости. Во внешнем поле поляризация спинов неупорядоченной подрешетки приводит к подавлению дальнего порядка в упорядоченной подрешетке.

Высокая и отрицательная величина $\Theta = -429 \, \text{K}$, найденная в Cu₂FeBO₅, указывает на большой масштаб антиферромагнитных взаимодействий. В то же время отсутствие аномалий теплоемкости, связанных с магнитными переходами, свидетельствует о том, что дальний магнитный порядок не формируется. Такое поведение указывает на подавление обменных взаимодействий вследствие, вероятно, сильных фрустраций. Сравнение величин Θ для Cu₂FeBO₅ и Cu₂GaBO₅ (-60 K) [5,11] показывает, что замещение немагнитных ионов Ga³⁺ магнитоактивными ионами Fe³⁺ вызывает усиление антиферромагнитных корреляций. Отношение температур Кюри Θ и магнитного перехода T_{cr} ($\Theta/T_{cr} \approx 12, 15$ для Fe-, Ga-замещенных образцов соответственно) предполагает, что в обоих случаях источником магнитных фрустраций является структурно- и магнитно-неупорядоченная подрешетка М4-М2-М4. Увеличение средней намагниченности такой подрешетки за счет магнитного замещения должно вызвать усиление вклада этой подсистемы в полную магнитную энергию. Ее влияние на упорядоченную подсистему возрастает настолько, что дальний порядок подавляется. Сильная зависимость намагниченности от режимов охлаждения (FC и ZFC) в малых полях и отсутствие аномалий теплоемкости свидетельствует в пользу того, что в Cu_2FeBO_5 при $T_1 = 35 \,\mathrm{K}$

формируется состояние, подобное спиновому стеклу. Увеличение температуры магнитного перехода T_1 по сравнению с T_N в Cu₂GaBO₅ [5,11,13] отражает усиление роли структурно-неупорядоченной подрешетки. Наличие фрустраций в Cu₂FeBO₅ приводит к выделению значительной части магнитной энтропии при высоких температурах, что проявляется в измерениях теплоемкости и магнитной восприимчивости.

Таким образом, людвигиты представляют собой пример экспериментальной реализации систем с сильной взаимосвязью структурного и магнитного порядков. В связи с этим управление структурным порядком открывает возможности управления магнитными и электронными свойствами. Разупорядочение в катионной подсистеме может быть вызвано разупорядочением в анионной. В структуре людвигита три из пяти симметрийно-неэквивалентных позиций кислорода входят в состав ВО3-треугольников и принадлежат прочному каркасу анионной подсистемы. Смещение этих атомов должно вызывать искажение ВО3-треугольников, их поворот или отклонение от bc-плоскости, т. е. кардинальное изменение кристаллической структуры. В то же время атомы О1 и О4 являются «свободными», из которых только О4 обладает наибольшей подвижностью (аномально большой параметр U_{eq}).

Атомная нестабильность позиции O4 связана с ее неэквивалентным катионным окружением по отношению к другим кислородным позициям. В табл. 9 приведены межионные расстояния кислород-катион и средние расстояния (O-Cation) для каждой позиции. В ближайшем окружении атомов O2, O3, O5 кроме атома бора имеются три атома метал-

ЖЭТФ, том 164, вып. 4 (10), 2023

ла. Эти позиции характеризуются наименьшим расстоянием $\langle O-Cation \rangle = 1.955, 1.959, 1.957 Å$ соответственно. Атом кислорода О1 имеет четыре связи с металлическими атомами. Длины связей имеют высокую однородность, давая среднюю величину $\langle O1-Cation \rangle = 1.978$ Å. Расщепленная кислородная позиция О4А/О4В координируется наибольшим числом металлических атомов (пять атомов). При такой координации анион О²⁻ образует пять связей со средним усилием 0.4 валентных единиц. Это гораздо меньше, чем для кислородных атомов О1, О2, ОЗ, О5 (среднее усилие 0.5 валентных единиц). Поэтому для атома кислорода в позиции О4 длины связей (O4-Cation) лежат в интервале 2.135-2.137 Å, т.е. они значительно больше, чем для других кислородных атомов. Ослабление взаимодействия, вызванное заметным увеличением длины связи, вероятно, является источником атомной нестабильности этой позиции. Способность атома кислорода О4 смещаться в направлении того или иного металлического иона приводит к тому, что симметрия кристаллического поля в месте расположения иона Cu²⁺ понижается и, наоборот, локальная симметрия октаэдра, окружающего ионы Fe³⁺ (S-ион), повышается. Чередование зарядов вдоль «упорядоченной» цепочки ионов М4-М2-М4 должно вызывать уменьшение полной энергии системы за счет выигрыша в энергии стабилизации, которая минимизируется за счет упорядочения искажений.

Атомная нестабильность позиции О4 может объяснить беспорядок в катионной подсистеме. Чем больше атомов кислорода, координирующих металлический ион, являются структурно-разупорядоченными, тем выше структурный беспорядок на данном металлическом узле. В ближайшем окружении металлического иона в позиции М2 из шести атомов кислорода четыре разупорядочены по позиции О4 (отношение $\delta = 2/3$). Для металлических ионов в позициях M4, M3 это отношение равно $\delta = 1/3$, 1/6 соответственно. Отсюда следует условие катионного беспорядка, который уменьшается в ряду $M2 > M4 \gg M3$ и находится в хорошем согласии с экспериментально наблюдаемыми факторами заполнения, определенными из рентгеноструктурных и мессбауэровских исследований гетерометаллических соединений данного семейства (см. табл. 1).

Результаты настоящей работы показывают, что магнитное состояние людвигитов вообще, и Cu_2FeBO_5 в частности, сильно зависит от катионного распределения, которое, в свою очередь, крайне чувствительно к условиям синтеза (метод получения, раствор-расплавная система, температура кристаллизации, скорость охлаждения и т. д.). Повышение локальной симметрии октаэдров вследствие анионного упорядочения может обеспечить равные потенциалы между занятыми металлическими узлами и вызвать перераспределение катионных состояний. В связи с этим представляют интерес исследования кристаллической структуры и электронных свойств людвигитов при высоких температурах.

В качестве альтернативного пути управления катионным и, следовательно, магнитным порядком может стать наличие в структуре ионов переходных металлов с незаполненными 4d- и 5d-оболочками (Nb⁵⁺, Ta⁵⁺, W⁶⁺) так называемых сегнетоактивных ионов. Сильная ковалентная связь такого иона с окружающими ионами кислорода может обеспечить атомную стабильность кислородных позиций и, соответственно, структурный порядок в анионной подсистеме. Примером успешной реализации такого подхода является недавно синтезированный варвикит Co_{1.33}Nb_{0.67}BO₄, в котором дальний ферримагнитный порядок достигается посредством двух фазовых переходов [25].

5. ВЫВОДЫ

Методом спонтанной кристаллизации из раствора-расплава получены монокристаллы людвигита Cu₂FeBO₅. С помощью рентгеновской дифракции решена кристаллическая структура. Обнаружено структурное разупорядочение атомов Си и Fe, которое возникает главным образом в триаде М4-М2-М4 и является следствием структурного разупорядочения атомов кислорода в позиции O4. Атомное смещение кислорода в позиции О4 вызывает понижение симметрии кристаллического поля на узле, занятом ионом Cu²⁺, и ее повышение на узле, занятом ионом Fe³⁺. В результате единичная ячейка содержит два типа триад, Fe(4A)-Fe(2A)-Cu(4A) и Fe(4B)–Cu(2B)–Fe(4B), в которых атомы кислорода статически упорядочены. Измерения эффекта Мессбауэра показали, что ионы Fe³⁺ находятся в высокоспиновом состоянии, октаэдрическом окружении и занимают четыре неэквивалентных по локальному окружению позиции. Парамагнитное состояние ионов железа наблюдается до $T = 40 \, \text{K}$. При $T = 4 \,\mathrm{K}$ спектр аппроксимируется суммой трех секстетов с величиной среднего сверхтонкого поля на ядрах железа $\langle H_{hf} \rangle = 460 \, \text{к}$ Э. Измерения статической намагниченности обнаружили дивергенцию кривых FC и ZFC в малых полях и две магнитные особенности при $T_1 = 35 \,\mathrm{K}$ и $T_2 = 20 \,\mathrm{K}$. Отсутствие аномалий теплоемкости, связанных с магнитными переходами, и малая величина магнитной энтропии $S_{mag} \approx 7 \, \text{Дж/моль} \cdot \text{K}$ указывают на доминирующую роль ближнего магнитного порядка и наличие фрустраций, вызванных разупорядочением в катионной подсистеме. Пути достижения катионного и дальнего магнитного порядков обсуждаются.

Благодарности. Авторы выражают благодарность Е. М. Мошкиной за помощь в получении кристаллов, Л. А. Соловьеву за полезное обсуждение результатов рентгеновской дифракции.

Финансирование. Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект ННИО_а № 21-52-12033).

ЛИТЕРАТУРА

- А.И. Смирнов, Л.Е. Свистов, Л.А. Прозорова и др., УФН 180, 880 (2010).
- Л. Е. Свистов, Л. А. Прозорова, Н. Бюттген и др., Письма в ЖЭТФ 81, 133 (2005).
- А.И. Панкрац, Г.А. Петраковский, М.А. Попов и др., Письма в ЖЭТФ 78, 1058 (2003).
- J. Schaefer and K. Bluhm, Z. Anorg. Allg. Chem. 621, 571 (1995).
- R. M. Eremina, T. P. Gavrilova, E. M. Moshkina et al., J. Magn. Magn. Mater. 515, 167262 (2020).
- E. Moshkina, C. Ritter, E. Eremin et al., J. Phys.: Condens. Matter 29, 245801 (2017).
- K. Bluhm and H.K. Muller-Buschbaum, Z. Anorg. Allg. Chem. 582, 15 (1990).
- J. Kumar, S.N. Panja, D.J. Mukkattukavil et al., Phys. Rev. B 95, 144409 (2017).
- Н.Б. Иванова, М.С. Платунов, Ю.В. Князев и др., ФТТ 54, 2080 (2012).

- F. Damay, J. Sottmann, F. Fauth et al., Appl. Phys. Lett. 118, 192903 (2021).
- A. A. Kulbakov, R. Sarkar, O. Janson et al., Phys. Rev. B 103, 024447 (2021).
- M. A. Continentino, J. C. Fernandes, R. B. Guimãraes et al., Eur. Phys. J. B 9, 613 (1999).
- **13**. Г. А. Петраковский, Л. Н. Безматерных, Д. А. Великанов и др., ФТТ **51**, 1958 (2009).
- 14. G. M. Sheldrick, Acta Cryst. A 64, 112 (2008).
- PLATON A Multipurpose Crystallographic Tool. Utrecht University, Utrecht, The Netherlands (2008).
- 16. M. H. Cohen and F. Reif, Sol. St. Phys. 5, 321 (1957).
- 17. I. D. Brown and D. Altermatt, Acta Cryst. B 41, 244 (1985).
- D. A. Velikanov, Inorg. Mater. Appl. Res. 11, 801 (2020).
- Д. А. Великанов, Патент RU2481591 (С1), опубликовано 10.05.2013, Бюлл. изобрет. № 13, https://www.fips.ru/Archive/PAT/2013FULL/ 2013.05.10/DOC/RUNWC1/000/000/002/481/ 591/ DOCUMENT.PDF
- J. C. Fernandes, R. B. Guimarães, M. A. Continentino et al, Phys. Rev. B 58, 287 (1998).
- 21. Y. V. Knyazev, N. V. Kazak, V. S. Zhandun et al., Dalton Trans. 50, 9735 (2021).
- 22. A. P. Douvalis, A. Moukarika, T. Bakas et al., J. Phys.: Condens. Matter 14, 3303 (2002).
- 23. G. A. Bain and J. F. J. Berry, Chem. Educ. 85, 532 (2008).
- 24. M. G. Banks, R. K. Kremer, C. Hoch et al., Phys. Rev. B 80, 024404 (2009).
- 25. N.V. Kazak, N.A. Belskaya, E.M. Moshkina et al., J. Magn. Magn. Mater. 534, 168056 (2021).