# ВЛИЯНИЕ МАГНИТНОГО ПОЛЯ НА ПРОВОДИМОСТЬ ТУННЕЛЬНОЙ СТРУКТУРЫ СВЕРХПРОВОДНИК–ИЗОЛЯТОР–НОРМАЛЬНЫЙ МЕТАЛЛ

А.Б. Ермаков<sup>а</sup>, М.А. Тарасов<sup>а</sup>, В.С. Эдельман<sup>b\*</sup>

<sup>а</sup> Институт радиотехники и электроники им. В. А. Котельникова Российской академии наук 125009, Москва, Россия

<sup>b</sup> Инстиут физических проблем им. П. Л. Капицы Российской академии наук 119334, Москва, Россия

> Поступила в редакцию 27 октября 2023 г., после переработки 1 марта 2024 г. Принята к публикации 25 апреля 2024 г.

Проанализированы результаты экспериментов по влиянию магнитного поля на проводимость туннельных структур сверхпроводник-изолятор-нормальный металл при температурах, много меньших критической температуры сверхпроводника  $T_c$ , и при малых напряжениях, при которых одноэлектронный ток  $I_{single}$  сравним или меньше подщелевого андреевского тока  $I_{Andreev} = I_n + I_s$ . Эти две компоненты андреевского тока связаны с диффузионным движением коррелированных пар электронных возбуждений в нормальном и соответственно сверхпроводящем слоях структуры. При ориентации поля перпендикулярной к структуре с латеральными размерами больше глубины прникновения прослежен переход от неоднородного распределения поля к вихревой структуре. При ориентациях поля как в плоскости структуры, так и перпендикулярно к ней, одноэлектронный ток растет из-за влияния поля на сверхпроводящую щель  $\Delta_c$ . Проводимость, обязанная андреевскому току  $I_n = k_n \operatorname{th}(eV/2kT_{eff})$ , уменьшается из-за роста эффективной температуры  $T_{eff}$ . Уменьшение вклада  $I_s$  связано с уменьшением щели. Нам не известны работы, в которых рассматривается влияние магнитного поля на эту составляющую туннельного тока. Показано, что при малых напряжениях так называемый ток Дайнса, обязанный мнимой добавке к энергии щели из-за влияния дефектов в сверхпроводнике, не дает вклада в проводимость туннельной структуры.

Памяти А. Ф. Андреева посвящается

**DOI:** 10.31857/S0044451024090098

#### 1. ВВЕДЕНИЕ

Несмотря на большое число работ, посвященных исследованию проводимости тонкопленочных микроструктур сверхпроводник–изолятор–нормальный металл (СИН) при низких температурах, остаются вопросы, связанные с влиянием постоянного магнитного поля. Этой теме посвящено довольно много теоретических работ, но количество экспериментальных работ весьма ограничено. Из известных публикаций можно упомянуть статьи [1–3], в которых прослежен эффект распаривания в сверхпроводящем электроде СИН под действием магнитного поля, приводящий к уменьшению энергетической щели и возрастанию туннельного тока при смещении V, близком к напряжению  $V_c = \Delta_c/e$ , где  $\Delta_c$  — щель в спектре сверхпроводника. В частности, в [3] этот эффект исследован для структуры алюминий-изолятор-медь. Появление вихрей Абрикосова в пленках алюминия в нормальном поле прослежено в [4,5]. Подавление аномальной дифференциальной проводимости при V = 0 магнитным полем, приложенным в плоскости структуры, приведено в [6,7]. Однако нет работ, в которых все эти явления, а также влияние поля на другие компоненты подщелевого тока, наблюдались на одном образце и при разных ориентациях магнитного поля. Цель предлагаемой работы — описание и анализ экспери-

ÉE-mail: vsedelman@yandex.ru

ментов, удовлетворяющих этому требованию. При этом мы ограничиваемся областью малых смещений  $V \leq 0.5V_c$ , при которых тепловые эффекты — нагрев или электронное охлаждение, сильно усложняющие анализ результатов, практически не влияют на туннельный ток.

Ток СИН складывается из одноэлектронного тока и подщелевого тока. Одноэлектронный ток обязан туннелированию термически возбужденных выше уровня Ферми электронов из нормального металла на свободные состояния выше щели сверхпроводника с сохранением энергии (при другом знаке смещения туннелированию возбуждений сверхпроводника на свободные состояния ниже уровня Ферми). При электронной температуре  $T_e << T_c$  и  $V \leq 0,7V_c$  он с точностью порядка 1 процента описывается формулой [8]

$$I_{single} = \frac{1}{eR_n} \sqrt{2\pi kT_e \Delta_c} \exp\left\{-\frac{\Delta_c}{kT_e}\right\} \operatorname{sh} \frac{eV}{kT_e}.$$
 (1)

При  $V \leq V_{\Delta}/2$  и температуре  $T \leq 0.2T_c$  ( $T_c$  — критическая температура сверхпроводимости) этот ток становится мал и основным становится подщелевой андреевский ток и ток Дайнса. Андреевская проводимость много меньше проводимости СИН при нормальном состоянии сверхпроводника, но сохраняется на заметном уровне в «грязных» металлах, когда электронные пары диффундируют на больпие расстояния, сохраняя когерентность, и в тонких пленках многократно возвращаются к границе между металлами, что увеличивает вероятность их туннелирования. Эта составляющая тока описывается формулой, предложенной в [9]:

$$I_{Andreev} = I_n + I_s = \frac{\hbar}{e^2 R_n^2 S \nu_n d_n} \operatorname{th} \frac{eV}{2kT_e} + \frac{\hbar}{e^2 R_n^2 S \nu_s d_s} \frac{eV/\sqrt{1 - eV/\Delta_c}}{2\pi\Delta_c}.$$
 (2)

Токи  $I_n$  и  $I_s$  отвечают диффузии пар в объеме нормального металла и сверхпроводника соответственно,  $R_n$  — сопротивление перехода в нормальном состоянии, S — его площадь,  $d_n$ ,  $d_s$  — толщина слоев, а  $\nu_n$ ,  $\nu_s$  — плотности состояний. Хотя все фигурирующие в этой формуле величины или известны, или могут быть измерены, измеряемые токи обычно сильно отличаются от теоретических значений. Считается, что основная причина в неоднородности запорного слоя, из-за чего его прозрачность для одноэлектронного туннелирования выше, чем для двух электронного. Исходя из этого, в [7] предложено для описания экспериментальных результатов использовать формулу

$$I_{Andreev} = I_n + I_s =$$

$$= k_n h \frac{eV}{2kT_{eff}} + k_s \frac{eV/\sqrt{1 - eV/\Delta_c}}{\Delta_c}, \quad (3)$$

в которой параметры  $k_n$ ,  $k_s$  и  $T_{eff}$  определяются при подгонке экспериментальной ВАХ. Работа [9] не единственная, в которой вычислялся андреевский ток. Так, в [10] получен похожий результат, но с некими отличиями. И это не только другие численные коэффициенты, но другая зависимость тока  $I_s$ от напряжения смещения:

$$I_{Andreev} = I_n + I_s =$$

$$= \frac{3\pi\hbar}{2e^2 R_n^2 S \nu_n d_n} \operatorname{th} \frac{eV}{2kT_e} +$$

$$+ \frac{2\hbar}{e^2 R_n^2 S \nu_s d_s} \frac{eV/\sqrt{1 - (eV/\Delta_c)}}{\Delta_c}.$$
 (4)

В этом случае в выражении для тока  $I_s$  под знаком корня стоит напряжение смещения не в первой степени, как в (2), а в квадрате. В первом случае дифференциальная проводимость dI/dV при малых напряжениях линейно возрастает, а во втором — практически постоянна. Функционально, согласно (4), этот вклад в ток совпадает с током Дайнса, который в большинстве известных работ считается ответственным за избыточный ток. Это одноэлектронный подщелевой ток, обязанный при  $T \ll T_c$ размытию спектра возбуждений сверхпроводника из-за дефектов. На основе экспериментальных данных показано, что спектр приобретает вид [11]

$$\rho(E,\gamma) = \frac{E - i\gamma}{\sqrt{(E - i\gamma)^2 - \Delta_c^2}},$$

где  $\gamma \ll \Delta_c$  — эмпирический параметр, описывающий это размытие. Исходя из этого спектра, получается выражение для тока (например, [12])

$$I_{Dynes} = \frac{\gamma}{\Delta_c} \frac{V/\sqrt{1 - (eV/\Delta_c)^2}}{R_n}.$$
 (5)

В этой работе проведен более подробный, чем в [7], анализ экспериментов по исследовании проводимости СИН при охлаждении их до температуры порядка 0.1 К в магнитном поле до 30 мТл. В поле, нормальном к поверхности СИН, в структуре с латеральными размерами много большими глубины проникновения  $\lambda$  в сверхпроводник, прослежен переход от неоднородного распределения поля к структуре



**Рис. 1.** Изображение с помощью сканирующего электронного микроскопа СИНИС-структур. 1, 2, 3, 4 — туннельные переходы, 5, 6, 7 — подвешенные нормальные мостики

из вихрей Абрикосова. Это позволило оценить  $\lambda$  и длину корреляции ξ. В [7] в основном рассматривалось влияние поля только на компоненту андреевского тока I<sub>n</sub>. Здесь с опорой на результаты работы [3] изучено воздействие однородного поля, лежащего в плоскости СИН с толщиной сверхпроводящей пленки  $d < \lambda$ , на одноэлектронную проводимость. Установлено, что распаривание приводит к более быстрому, чем найдено в [3], квадратичному уменьшению параметра  $\Delta_c$ , при этом формула (1) по-прежнему описывает одноэлектронный ток. Показано, что при  $G_{single} \leq 0.2G_N (G_N - нор$ мальная проводимость) происходит переход от тока Дайнса (5) к току, экспоненциально падающему с уменьшением напряжения. Знание одноэлектронного тока позволило надежно выделить компоненты андреевского тока  $I_n$  и  $I_s$ . Результаты, относящиеся к току I<sub>n</sub>, практически совпадают с полученными в [7]. Ток I<sub>s</sub> зависит от поля слабее, чем I<sub>n</sub>. Эту зависимость можно описать как обязанную квадратичному уменьшению щели с полем. Дано на качественном уровне объяснение изменений компонент тока при нормальном поле при его неоднородном распределении.

## 2. МЕТОДИКА ИЗМЕРЕНИЙ

Большая часть экспериментов проведена с тест-структурами, описанными в работе [7]. На рис. 1 представлено изображение такой структуры. Она содержит 4 туннельных перехода (1–4) медь–алюминий, соединенных медной полоской, напыленной на окисленную поверхность алюминия, напыленного непосредственно на кремниевую подложку. На участках 5–7 алюминий, находящийся под медью, вытравлен. Толщины пленок 20 нм (медь) и 80 нм(алюминий), площади СИН1 и СИН2 8 и 10 мкм соответственно. На чип с 16 контактными площадками по краям расположены 4 таких структуры. Были протестированы 20 СИН на двух чип. Полученные для них результаты близки друг к другу. Чтобы не перегружать изложение, далее большая часть результатов приведена для одного из СИН1, у которого наиболее выражен андреевский ток.

Вольт-амперные характеристики измерялись на постоянном токе по четырехзондовой схеме. Для защиты туннельных переходов от паразитного излучения в цепи подводящих проводов были включены резисторы номиналом 0.8М Ом, охлаждаемые до 0.4 К. Топология структуры позволяла измерять как характеристики СИНИС переходов, например, при пропускании тока через переходы 1 и 4 и измерении напряжения на них, так и одиночного СИН, например, при измерении напряжения на контактах 1-2 и токе через контакты 1-4. Использовалась автоматизированная система сбора данных на основе портативного компьютера ноутбук и NI USB блока ЦАП-АЦП. Ток І задавался 16-разрядным ЦАП. Усиленное малошумящим усилителем напряжение V преобразовывалась 16-разрядным АЦП. Дифференциальная проводимость G(V) = dI/dV или дифференциальное сопротивление  $R_d$  определялись численным дифференцированием вольт-амперных харак-



Рис. 2. Измеренная вольт-амперная характеристика СИН и ее фитирование теоретическими моделями. При подгонке используются значения  $\Delta_c/k=2.18~{\rm K}$  и  $R_n=29~{\rm Om},$  определяемые из зависимостей туннельного тока от температуры, и величины  $k_n=0.135{\rm HA},~k_s=0.32~{\rm HA}$  или  $\gamma/\Delta=6.2\cdot10^{-5},~T_{eff}=0.11~{\rm K}$  и  $T_e=0.094~{\rm K}.$ Электронная температура  $T_e$  оценивается по одноэлектронному току при температуре чипа  $T\simeq0.09~{\rm K}.$  Обычно  $T_e$  несколько выше

Tиз-за проникновения излучения из окружения

теристик. Измерения проводились с использованием работающего под управлением компьютера погружного криостата растворения [13], в котором образцы размещаются внутри экрана с температурой 0.4–0.5 К на верху прибора на охлаждаемом держателе. Образцы устанавливались горизонтально или вертикально. Направленное вертикально магнитное поле, создаваемое соленоидом, установленным снаружи криостата, прикладывается примерно по нормали или по касательной к плоскости туннельного перехода с погрешностью в несколько градусов. Для изменения направления поля можно наклонять соленоид в пределах ±10<sup>0</sup>.

## 3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

На рис. 2 и 3 приведены измеренные без магнитного поля ВАХ для этой структуры и их фитирование при температуре чип  $T_{chip} = 0.09$  К и составляющие тока (рис. 2), и при нескольких температурах, рис. 3. Это позволило определить исходные значения всех параметров:  $\Delta_c$ ,  $R_N$ ,  $k_n$ ,  $k_s$  (для андреевского тока по [9]) или  $\gamma$  (для тока Дайнса),  $T_{eff}$ и электронную температуру  $T_e$ , которая несколько выше  $T_{chip}$  из-за нагрева паразитным излучением, проникающим из комнаты. Непосредственно измерить небольшое сопротивление  $R_N$  и определить  $\Delta_c$ по положению максимума проводимости при  $V \simeq V_c$ оказалось невозможно, так как оно включено после-



Рис. 3. Определение параметров  $\Delta_c$  и  $R_n$  по ВАХ, измеренных при разных температурах, с учетом малой поправки на андреевский ток. Параметры андреевского тока установлены при T = 0.09 К



**Рис. 4.** ВАХ при воздействии магнитного поля, приложенного в плоскости структуры и под углом примерно  $4^\circ$  к ней

довательно с сопротивлением подводящих ток дорожек примерно той же величины. Из-за этого максимум на экспериментальных зависимостях дифференциальной проводимости от напряжения вообще не проявлялся даже в отсутствие магнитного поля. Его можно было выявить только после оценки сопротивления токоподводов, исходя из вычисленного значения  $R_N$  и введения поправки на падение напряжения.

На рис. 4 приведены ВАХ, измеренные в нулевом поле и в поле 28 мТл и их фитирование с использованием формул (1) и (3). В наклонном магнитном поле оно влияет на изменение тока сильнее, чем при его приложении в плоскости. Именно это позволяет, наклоняя соленоид, добиться юстировки поля относительно плоскости СИН с точностью поряд-



**Рис. 5.** ВАХ при разных значениях магнитного поля, нормального к поверхности СИН-структуры. Последовательность регистрации ВАХ указана в минутах от начала регистрации соответствующей характеристики, длительность записи каждой из них примерно 2мин. При регистрации ВАХ при поле 5.1 мТл на 48 минуте произошел скачкообразный переход от неоднородного поля в сверхпроводнике к вихревому состоянию. Таким образом,  $B_{c1} < 5$  мТл. Отметим, что ВАХ, измеренные при внешнем поле 3.6 мТл на 18 и 25 минутах и 4.7 мТл на 35 и 38 минутах, свидетельствуют о возможности различных конфигураций неоднородного поля в сверхпроводнике с близкой энергией

ка 1°. Как видно, использованные функциональные зависимости хорошо описывают экспериментальные результаты, что подтверждает отсутствие тепловых эффектов при пропускании тока и позволяет установить влияние магнитного поля на параметры как подщелевого, так и одноэлектронного тока.

## 3.1. Поле по нормали к поверхности СИН

На рис. 5 приведены ВАХ при разных значениях магнитного поля, нормального к поверхности СИН-структуры. Последовательность регистрации ВАХ указана в минутах от начала регистрации соответствующей характеристики, длительность записи каждой из них примерно 2 мин. При регистрации ВАХ при поле 5.1 мТл на 48 минуте произошел переход от неоднородного поля в сверхпроводнике к вихревому состоянию, о чем свидетельствует резкое изменение дифференциальной проводимости G(V = 0, B = 0) от  $1.15 \cdot 10^{-5} \,\mathrm{Om}^{-1}$  до  $0.003 \,\mathrm{Om}^{-1}$ . По-видимому, это состояние не отвечает максимальному заполнению вихрями области туннельного перехода, так как в опыте с охлаждением образца от  $T > T_c$  до 0.1К в поле 4.7 мТл проводимость при нулевом смещении составила 0.01 Ом<sup>-1</sup>. При этом она остается значительно меньше  $1/R_N = 0.032 \, \text{Om}^{-1}$ . Вихревое состояние есть прямое свидетельство того, что тонкие пленки алюминия сверхпроводники второго рода [4,5]. Для исследуемой структуры  $B_{c1} < 5 \,\mathrm{MTл.}$  Отметим, что ВАХ, измеренные при внешнем поле 3.6 мТл на 18 и 25 минутах и при

4.7 мТл на 35 и 38 минутах демонстрируют «отскок» как бы к меньшему полю. Это свидетельствуют о возможности различных конфигураций неоднородного поля в сверхпроводнике с близкой энергией. Эти состояния распределения поля метастабильны с большим гистерезисом. Так, вихревая структура сохраняется неизменной при выключении поля и разрушается только в поле противоположного направления или при нагреве выше  $T_c$ .

В чистом алюминии при  $T << T_c$  критическое поле  $B_{\rm c}\simeq 11\,{\rm MTr}$ , длина когерентности  $\xi_0 \simeq 1500 \, {\rm hm}, \,$ глубина проникновения магнитного поля  $\lambda_0 = 15$  нм. На рис. 6 показано изменение дифференциальной проводимости СИН-структуры в магнитном поле. Видно, что при 14м Тл еще сохраняется минимум проводимости, обязанный сверхпроводимости алюминия. Это говорит о том, что  $B_{c2}/B_{c}$  > 1.3. Из соотношения  $B_{c2}B_{c1} = B_{c}^{2}$  при  $B_{c1}=5\,{\rm мT}$ л имеем $B_{c2}/B_c\simeq 2.2.$ Используя оценку  $B_{c2} = \Phi_0 / 2\pi \xi^2$  (  $\Phi_0$  — квант магнитного потока) получим, что  $\xi$  лежит в интервале 115–150 нм. Из соотношения  $\xi^2 = \xi_0 l$  для длины пробега электронов в пленке алюминия получим l = 9 - 15 нм. И наконец, для глубины проникновения из соотношения  $B_{c1}/B_c = \xi/\lambda$  следует, что  $\lambda$  лежит в интервале 200-250 нм. Таким образом, выполнен критерий сверхпроводимости второго рода. (Используемые здесь соотношения взяты из [14, 15].)

Используя формулу для зависимости локальной проводимости квантового вихря от расстояния от его центра, полученную при туннельной спектроско-



Рис. 6. Зависимости дифференциальной проводимости СИН1 от напряжения при разных значениях индукции магнитного поля, перпендикулярного поверхности СИ

пии в работе [16],

$$G(x) = G_0 - \frac{G_N - G_0}{1 - \text{th}(x/\xi)},$$

считая вихрь аксиально симметричным, получим для проводимости одного вихря  $0.0009 \,\mathrm{Om}^{-1}$  (для  $\xi = 100 \,\mathrm{hm}$ ) и  $0.0019 \,\mathrm{Om}^{-1}$  (для  $\xi = 150 \,\mathrm{hm}$ ). При проводимости СИН в поле  $4.7 \,\mathrm{mTn}$  равной  $0.01 \,\mathrm{Om}^{-1}$  это соответствует включению 11 или 5 вихрей. Максимальное число вихрей на площади СИН  $S = 8 \,\mathrm{mkm}^2$  в поле  $4.7 \,\mathrm{mTn}$  в соответствии с соотношением  $n = SB/\Phi_0 = 18$ . Согласно работе [17], для образцов микронных размеров такое заполнение не достигается из-за сохранения мейснеровского состояния по краям пленки на размерах порядка  $\lambda$ . Так, для круга диаметром 2 мкм вместо 6 помещается только 2–3 вихря. Таким образом, проводимость СИН в поле, большем  $B_{c1}$ , согласуется с картиной вихревой структуры.

## 3.2. СИН в касательном поле

#### 3.2.1. Одноэлектронная проводимость

Как видно на рис. 1, область перехода имеет сложную геометрию: она имеет участок с размерами  $2 \times 3 \,\mathrm{Mkm^2}$ , от которого под прямым углом отходит полоска  $\simeq 1 \times 2 \,\mathrm{Mkm^2}$ . Эти размеры превышают глубину проникновения. Поэтому в нормальном к поверхности СИН магнитном поле из-за эффекта Мейснера – Оксенфельда его распределение сильно неоднородно — практически отсутствует в середине, а на краях перехода в разы превышает поле на бесконечности. Как оказалось, и в этом случае изме-



Рис. 7. Изменение сверхпроводящей щели в касательном магнитном поле.  $\Delta^{min}$  — значение, определенное по зависимости от поля одноэлектронной компоненты тока,  $\Delta(k_s = \text{const})$  соответствует постоянному значению  $k_s$  в формуле (3) для андреевского тока,  $\Delta^{max}$  соответствует результатам работы [4] при  $\xi = 150$  нм

ренные ВАХ можно аппроксимировать формулами (1)–(5). Однако полученные в этом случае результаты позволяют делать только качественные выводы. При поле в плоскости ситуация обратная — толщина сверхпроводящей пленки 80 нм значительно меньше  $\lambda$ . Используя соответствующую формулу распределения поля в тонкой пластине [15], можно оценить, что поле в середине пленки меньше, чем на бесконечности, на 1–1.5 %. Это позволяет получить количественные результаты.

Согласно рис. 4, магнитное поле приводит к изменению одночастичного тока аналогично повышению температуры. Но поскольку постоянное поле не может нагревать СИН, то рост тока означает уменьшение сверхпроводящей щели из-за эффекта распаривания. На рис. 7 приведены зависимости  $\Delta_c$  для двух СИН и для СИНИС в касательном к поверхности поле. Все три зависимости совпадают в пределах погрешности определения этого параметра.

Эти зависимости можно аппроксимировать формулой вида

$$\Delta_c(B)/\Delta_c(0) = 1 - aB^2.$$
(6)

Согласно [3], щель изменяется как

$$\Delta_c(B)/\Delta_c(0) = 1 - 0.75(B/B_{\Gamma})^2.$$
 (7)

В работе [3] показано, что характерное поле  $B_{\Gamma}$  равно

$$B_{\Gamma} = \sqrt{6\hbar e/d\xi} = 0.78\Phi_0/(d\xi),\tag{8}$$



Рис. 8. Вверху: экспериментальные точки, перенесенные с рис. 3 работы [3], линии — фит с использованием формулы (1). Внизу: кружки — значения  $\Delta_c(B)/\Delta_c(0)$ , сплошная линия — фит линейной функцией, штриховые линии ограничивают снизу и сверху область, соответствующую результатам, представленным на рис. 7 с учетом возможного изменения масштаба по  $B^2$  из-за различия параметров  $L \times \xi$  в нашей работе и в [3], штрихпунктир — зависимость  $\Delta_c(B)/\Delta_c(0)$ , установленная в [3] по результатам измерений в области значений напряжения вблизи  $V_c$ 

где  $\Phi_0$  — квант магнитного потока, а d и  $\xi$  — размеры поперек направления магнитного поля (если  $d < \xi$ ). Фитируя экспериментальные значения для СИН1 выражением (6), получим  $B_{\Gamma} = 66$  мТл. При толщине сверхпроводящей пленки d = 80 нм, согласно (8), получаем, что длина корреляции  $\xi = 340$  нм. Однако, как установлено в разд. 3.1, значение  $\xi$  лежит в интервале 115–150 нм. Отметим, что при  $\xi = 340$  нм алюминий является сверхпроводником первого рода, что явно противоречит экспериментам в нормальном магнитном поле.

Таким образом, изменение  $\Delta_c$  сверхпроводника, определяемое по изменению одноэлектронного тока под воздействием поля, не соответствует модели, построенной в [3]. Как отмечено выше, в нашем случае было невозможно получить достаточно достоверные сведения о проводимости исследуемых структур при  $V \simeq V_c$ . Однако можно показать, что наши экспериментальные зависимости дифференциальной проводимости от напряжения «сшиваются» с приведенным в этой публикации. Так, приведенные в [3] зависимости G(V) при  $G(V)/G_n < 0.2$  можно фитировать с использованием формулы (1), верхний рис. 8. Полученные таким способом значения  $\Delta_c(B)/\Delta_c(0)$ представлены на нижнем рис. 8. Чтобы сопоставить эти данные с нашими результатами (рис. 7), надо учесть изменение масштаба по магнитному полю. Значения  $L * \xi$  в нашей работе и в [3] равны соответственно 0.014-0.018 и 0.015 мкм<sup>2</sup>. Исходя из этого,

результаты для СИН 1 должны лежать в области, ограниченной снизу и сверху штриховыми линиями на нижнем рис. 8.

Как видно, в этой области находятся и результаты нашего анализа данных из работы [3] при малых значениях проводимости. Однако значения  $\Delta_c(B)/\Delta_c(0)$ , отвечающие максимуму проводимости вблизи  $V_c$ , (штрихпунктирная линия), демонстрируют значительно меньшее изменение  $\Delta_c(B)/\Delta_c(0)$  и соответствуют теории. Таким образом, есть два параметра, изменяющихся квадратично с полем, характеризующие сверхпроводник:  $\Delta^{min}_{a}$ , описывающее экспоненциальное уменьшение одноэлектронного туннельного тока при уменьшении напряжения, и  $\Delta_c^{max}$ , описывающее проводимость в области максимума проводимости вблизи V<sub>c</sub>. В отсутствие поля они совпадают. Соответственно  $\Delta_c^{min}$  имеет смысл параметра обрезания в спектре Дайнса, и, как следствие, при малых значениях напряжения происходит переход при описании одноэлектронного тока от формулы (5) к формуле (1). Влияние поля, наклонного к поверхности или приложенного по нормали, можно описать формулой (6), однако коэффициент при  $B^2$  больше соответственно примерно в два раза и почти на 2 порядка. Качественно это можно объяснить влиянием двух факторов. Во-первых, при нормальном поле вместо размера d надо использовать  $\xi$ , что приведет к увеличению коэффициента а в формуле



Рис. 9. Дифференциальная проводимость при нескольких значениях индукции касательного магнитного поля и расчетные составляющие проводимости в отсутствие поля

(6) в 4.5 раз. Во-вторых, при сохранении полного потока поле в центральной области пленки мало, а на периферии значительно превышает поле далеко от сверхпроводника. Поэтому именно там, где распаривание, пропорциональное квадрату поля, сильнее, сосредоточен практически весь ток. Это с лихвой перекрывает уменьшение эффективной площади перехода.

#### 3.2.2. Андревская проводимость, компонента $I_n$

На рис. 9 приведены зависимости дифференциальной проводимости G СИН от напряжения при нескольких значениях индукции касательного магнитного поля и компонент тока, полученных при фитировании ВАХ в нулевом поле в соответствии с формулами (1) и (3), рис. 2. Согласно рис. 9, значение  $dI_n/dV$  при напряжении V = 0 соответствует значению  $G_A(V = 0) - G_{min}$ , использовавшемуся при анализе влияния касательного магнитного поля на андреевскую проводимость в работе [6]. Авторы цитируемой работы со ссылкой на теоретические публикации [18] для описания влияния магнитного поля применяли формулу

$$G_A(V=0,B) =$$
  
=  $G_A(V=0,B=0) \operatorname{th}(b)/b$ , (9)  
 $b = 2^{1/2} \lambda LeB/\hbar = B/B_0$ ,

где L — длина нормальной полоски, в пределах которой диффундируют электроны. Значение  $\lambda$  в [6] не приведено. Согласно этой формуле, поле влияет на  $k_n$ . Примнимость этого подхода вызывает вопро-





Рис. 10. Зависимости от индукции касательного и нормального к поверхности СИН магнитного поля, приведенных значений параметров  $k_n$  (при  $T_{eff}$  = const) и  $T_{eff}$  (при  $k_n$  = const), описывающих компоненту  $I_n$  андреевского тока, формула (3)

сы. Для пленки алюминия, как показано выше и известно из публикаций,  $\lambda$  составляет 150–200 нм. В [6] на рис. 3 в поле 0.28 Тл на порядок большем, чем в настоящей статье (рис. 9), при той же электронной температуре 0.1 К не видно вклада одноэлектронного тока. Исходя из результатов разд. 3.2.1, можно утверждать, что толщина пленки меньше 80 нм примерно в 3 и более раз. Используя формулу (9), можно оценить  $B_0 \approx 0.7 - 0.8$  Тл, и при L = 5 мкм на второй размер остается около 1 нм. Похоже, авторы [6] ошиблись в расчетах, поэтому нельзя признавать, что теория подтверждена экспериментом. Заметим так же, что представляется странным использовать параметр, описывающий сверхпроводник, для описания процессов в нормальном металле.

На рис. 10 приведены результаты определения  $k_n(B)/k_n(0)$  для СИН1 в предположении, что значение  $T_{eff}(B=0) = 0.11$  К не зависит от поля и  $k_n(0) = 0.135$ нА в касательном магнитном поле, и расчет дифференциальной проводимости при V = 0 по формуле (9) с  $B_0 = 5$  мТл. Если в формуле (9) вместо  $\lambda$  подставить толщину пленки 20 нм, то для L получаем значение 5 мкм, что близко к латеральным размерам нормальной пленки.

Альтернативный подход, использованный в работе [7], основан на качественных аргументах. В формуле андреевского тока  $I_n$  (2) коэффициент  $k_n$  не содержит величин, зависящих от магнитного поля или температуры. А изменение температуры приводит к тому, что при V = 0 дифференциальная проводимость, согласно теории, изменяется пропорционально  $1/T_e$  (формулы (2) и (4)). В [7] установлено, что реально надо использовать вместо  $T_e$  несколько большее значение  $T_{eff}$ , что связано с наличием дефектов в пленке металла. Это подтверждают результаты, полученные в [7] и приведенные ниже для многоэлементной структуры из последовательно включенных СИН алюминийокись алюминия-алюминий с тонким подслоем железа, подавляющим сверхпровдимость. В последнем случае T<sub>eff</sub> в несколько раз превышает значение  $T_e\simeq 0.1\,{\rm K}.$  Естественно предположить, что и магнитное поле приводит к изменению эффективной температуры. Поэтому при фитировании ВАХ с использованием формулы (3) считалось, что магнитное поле приводит к изменению T<sub>eff</sub>. На рис. 10 представлены результаты определения  $1/T_{eff}(B)$ при постоянном  $k_n(0) = 0.135$  нА для СИН1 в касательном магнитном поле и расчет дифференциальной проводимости при V = 0 по формуле

$$T_{eff}(B) = T_{eff}(0)(1 + (B/B_0)^2)$$
(10)

с  $B_0 = \Phi_0/(dl_\phi) = 11$ мТ, где d — толщина пленки 20 нм, а  $l_{\phi} \approx 9$  мкм пробег электрона с потерей фазы. Эта формула предложена по аналогии с описанием в работе [19] подавления эффекта близости мезоскопической пленки, контактирующей со сверхпроводником. Полученное значение  $l_{\phi}$  имеет разумное значение по порядку величины, особенно с учетом того, что формула (10) получена из качественных соображений. Согласно рис. 10, в обоих случаях достигается согласие в пределах погрешности определения  $dI_n/dV$  при V = 0. Однако в следующем разделе показано, что можно предпочесть модель изменения эффективной температуры под воздействием магнитного поля на основании изменения  $I_s(B)$  или  $I_{Dynes}(B)$ . Наряду с результатами, полученными в касательном поле, на рис. 10 представлены результаты измерений в нормальном поле. В этом случае андреевская проводимость изменяется быстрее. Аномальная андреевская проводимость подавляется полем, и основную роль начинает играть центральная область, размеры которой уменьшаются при росте поля. Однако такой локальный подход вряд ли применим, поскольку латеральные размеры  $L << l_{\phi}$ . Чтобы провести корректное сравнение воздействия на андреевский ток поля при разных его ориентациях нужны эксперименты со структурами, ширина и толщина которых сравнимы и заметно меньше глубины проникновения, чтобы обеспечить однородность поля в сверхпроводнике.

#### 3.2.3. Андреевская проводимость, компонента $I_s$

Согласно формулам (2), (4), этот ток должен зависеть от магнитного поля, в первую очередь, изза изменения  $\Delta_c(B)$ . Возникает вопрос, какое значение надо брать -  $\Delta_c^{min}(B)$ ,  $\Delta_c^{max}(B)$  или специфическое значение, описывающее ток  $I_s(B)$  при условии  $k_s = \text{const.}$  Как и в случае тока  $I_n(B)$ , коэффициент  $k_s$  в формулах (2), (4) не содержит величин, зависящих от поля. Нам не известно работ, обсуждающих зависимость от поля тока I<sub>s</sub>. Более того, в большинстве работ, посвященных исследованию СИН, за исключением [7], считается, что эта компонента андреевского тока пренебрежимо мала, и вместо нее при анализе вольт-амперных характеристик используется ток Дайнса  $I_{Dunes}$  (5). На рис. 11 представлены результаты определения параметров этих токов при фитировании вольт-амперных характеристик с использованием формул (1), (3), (5) при следующих предположениях.

1. При вычислении тока  $I_n$  принимаем  $k_n = \text{const}, T_{eff}$  зависит от поля B.

1.1.  $k_s$  ((1), рис. 11 *a*), альтернативно  $\gamma$  ((5), рис. 11 *b*), изменяются с полем, щель  $\Delta_c^{min}(B)$ .

1.2.  $k_s$  ((2), рис. 11 *a*), альтернативно  $\gamma$  ((6), рис. 11 *b*), изменяются с полем, щель  $\Delta_c^{max}(B)$ .

1.3.  $k_s = \text{const}$  ((9), рис. 11 *c*) альтернативно  $\gamma = \text{const}$  ((10) рис. 11 *c*) значения щели подбираются при фитировании ВАХ такими, чтобы удовлетворялось это условие.

2. При вычислении тока  $I_n$  принимаем  $T_{eff} = \text{const}, k_n$  зависит от поля B.

2.1.  $k_s$  (3), альтернативно  $\gamma$  (7), изменяются с полем, щель  $\Delta_c^{min}(B)$ .

2.2.  $k_s$  (4), альтернативно  $\gamma$  (точки на рис. 8), изменяются с полем, щель  $\Delta_c^{max}(B)$ .

2.3.  $k_s = \text{const}$  (точки на рис. 11 *c*) альтернативно  $\gamma = \text{const}$  (точки на рис. 12 *c*) значения щели подбираются при фитировании ВАХ такими, чтобы удовлетворялось это условие.

В принципе, не исключена «гибридная» модель с подбором соотношения вкладов от изменения как  $k_n$ , так и  $T_{eff}$ , обеспечивающих постоянство  $k_s$ . Однако при имеющейся точности измерения токов и напряжений делать это не имеет смысла.

Согласно рис. 11, можно исключить из рассмотрения все варианты, отвечающие пункту 2 и некоторые из вариантов пункта 1. Для увеличения с полем андреевского тока  $I_s$  (зависимости 2, 3, 4) нет оснований. Ток Дайнса (зависимости 6, 7, 8), в принципе, мог бы увеличиться, но не на десятки процентов, а в несколько раз из-за значительного ушире-



Рис. 11. Зависимость от индукции магнитного поля, приложенного в плоскости СИН, приведенных коэффициентов:  $a - k_s$  (компонента андреевского тока);  $b - \gamma$  (ток Дайнса); c -щель  $\Delta(k_s = \text{const})$  и  $\Delta(\gamma = \text{const})$ . Кривые 1, 2, 5, 6, 9, 10 при  $k_n = \text{const}$ , кривые 3, 4, 7, 8, 11, 12 при  $T_{eff} = \text{const}$ , кривые 1, 3, 5, 7 при  $\Delta^{min}$ , кривые 2, 4, 6, 8 при  $\Delta^{max}$ 

ния пика проводимости в области максимума вблизи щели [3]. Уменьшение сверхпроводящей щели, соответствующее постоянству  $k_s$  (зависимость 11) или  $\gamma$  (зависимость 12), значительно превышает изменение  $\Delta^{min}$ . При этом вопреки здравому смыслу во всех этих случаях и вариантов 1.2 (зависимости 1, 5) параметры быстро изменяются в области полей B < 10 мT, а при дальнейшем увеличении поля изменение замедляется или даже прекращается (зависимости 3, 7).

Таким образом, остается всего 2 варианта, отвечающие приемлемому описанию картины —  $k_n = \text{const}$ ,  $T_{eff}$  зависит от поля B,  $\Delta(k_s = \text{const})$  (рис. 11), зависимость 9, альтернативно  $\Delta(\gamma = \text{const})$  (рис. 11), зависимость 10, и эти значения щели, как и  $\Delta^{min}, \Delta^{max}$  квадратично уменьшаются с полем B (рис. 7, 11).

# 4. ПРОВОДИМОСТЬ МНОГОЭЛЕМЕНТНОЙ СТРУКТУРЫ

В [4,5,7] описаны результаты влияния нормального к поверхности магнитного поля и вклад андреевского тока в проводимость «электронного термометра» - структуры, содержащей 100 последовательно включенных идентичных цепочек из 5 параллельно соединенных СИН. Каждый СИН содержит алюминиевый электрод толщиной 80 нм, окись алюминия, нормальный электрод из алюминия с подслоем железа, подавляющим его сверхпроводимость. Площадь СИН-перехода 1.8 мкм<sup>2</sup>. Каждый переход связан с соседними пленками золота с размерами  $14\times100\times0.1~{\rm мкm^3}.$  При такой конфигурация структуры подавляются тепловые эффекты.

На рис. 12 приведены вольт-амперная характеристика и полученная ее численным дифференцированием проводимость термометра и ее фитирование с использованием формул (1) и (3). Фитирующая кривая с использованием формулы Дайнса на графике для тока неотличима от фитирования андреевским током по формуле (3). Однако для проводимости



Рис. 12. Измеренные ВАХ и дифференциальная проводимость электронного «термометра» из 100 последовательно включенных СИН и их фитирование с использованием формул (1), (3), (5). Параметры фитирования:  $R_n/100 = 90 \text{ Om}; \Delta_c/k = 2.07 \text{ K}; T_e = 0.087 \text{ K}.$  Для андреевского тока  $I_{Andreev}$ :  $T_{eff} = 1 \text{ K}; k_n = 0.098 \text{ нA}; k_s = 0.12 \text{ нА}.$  Для тока Дайнса  $I_{Dynes}$ :  $T_e = 0.0865 \text{ K}; T_{eff} = 1 \text{ K}; k_n = 0.022 \text{ нA}; \gamma/\Delta_c = 1.07 \cdot 10^{-4}$ 

видно различие при малых смещениях, заметно превышающее погрешность измерения. Оно составляет порядка 8% и проявляется потому, что измеряемое напряжение в сто раз больше, чем для одиночного СИН и поэтому отношение сигнал/шум значительно выше.

Отметим, что аномалия дифференцифльной проводимости — максимум при V = 0, обязанная андреевскому току  $I_n$ , не видна. Это связано с тем, что  $T_{eff} = 1 \pm 0.3$  К. Очевидно, это связано с магнитным моментом атомов железа, что говорит в пользу модели влияния магнитного поля на эффективную температуру.

## 5. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Исследование проводимости тонкопленочных СИН-структур в магнитном поле, нормальном к их поверхности, позволило оценить параметры сверхпроводящей пленки — корреляционную длину ξ и глубину проникновения поля  $\lambda$ . Благодаря этому удалось выявить особенность влияния магнитного поля, ориентированного в плоскости структуры с толщиной, много меньшей глубины проникновения, на ее проводимость. При малом напряжении на структуре, когда ее сопротивление при низкой температуре много больше  $R_n$ , одноэлектронный ток, как и в отсутствие поля, описывается формулой (1). Однако фигурирующее в ней значение  $\Delta_c$  изменяется с полем значительно быстрее, чем следует из теоретического рассмотрения распаривания и экспериментов в работе [3]. Такое поведение можно трактовать как обрезание спектра Дайнса и переход от формулы (5) к экспоненциальному спаду тока при уменьшении напряжения.

Двухчастичный андреевский ток (3), определяется как разность измеренного тока и вычисленного одноэлектронного тока. В поле изменение компоненты  $I_n$  описывается изменением эффективной температуры  $T_{eff}$  при постоянном значении коэффициента  $k_n$ . Изменение  $I_s$  можно описать, если считать, что  $k_s$  не зависит от поля, а квадратично с полем изменяется  $\Delta$ .

Хотя в этой картине нет места для тока Дайнса, используемого в большинстве работ по исследованию СИН-структур, в настоящей работе такая модель рассматривалась как альтернатива андреевскому току  $I_s$ . Почти во всех случаях, за исключением многоэлементного «электронного термометра», в пределах погрешности измерений удавалось фитировать измеренные вольт-амперные характеристики в рамках и той, и другой моделей с близкими результатами, касающимися изменения параметров СИН в магнитном поле. Однако благодаря высокой точности измерений для многоэлементной структуры выявлен линейный рост проводимости при малых напряжениях (рис. 12), который характерен для описываемого формулами (2), (3) андреевского тока и противоречит проводимости, определяемой током Дайнса (5).

Ток Дайнса обязан мнимой добавке в спектре возбуждений в сверхпроводнике, связанной с их рассеянием. Это приводит к уширению максимума при  $V \simeq \Delta_c/e$ . Естественно ожидать, что значительное, в несколько раз, уширение этого пика в магнитном поле [3], должно настолько же увеличить и ток Дайнса. Но этого не происходит. Наконец, в работе [6] для структур, изготовленных по одной и той же технологии, отличающихся только толщиной изолирующего слоя, оказалось, что в модели Дайнса параметр  $\gamma$ , зависящий только от параметров сверхпроводящей пленки, изменяется на порядок. При этом, как видно на рис. 3 этой работы, отношение андреевской проводимости, обязанной току  $I_n$ , к дополнительной подщелевой проводимости, практически сохраняется, что естественно для компонент андреевского тока. Отметим, что в [7] для разных образцов соотношение этих вкладов также изменяется весьма умеренно - не более чем втрое.

Основная причина, почему игнорируется ток  $I_s$ , та, что по теоретической формуле (2) отношение  $k_s/k_n << 1$ . А согласно эксперименту [7] оно для разных структур лежит в пределах 2-7, в десятки раз больше, чем по теории. Правда, если для оценки использовать формулу (4), то расхождение с экспериментом уменьшится примерно втрое. Согласно измерениям в [6] (рис. 4), для пленок с толщиной d > l в соответствующих формулах вместо d надо использовать длину пробега l. Для сверхпроводящей пленки с d =80 нм и длиной пробега l =9-15 нм (разд. 3.1), это приведет к увеличению расчетного значения  $k_s$  в 5–9 раз. Медная пленка имеет d = 20 нм и  $l \approx 10$  нм [7], так что  $k_n$  изменится незначительно. Учет этого обстоятельства делает различие теории и эксперимента не столь драматичным.

Таким образом, для описания проводимости туннельных СИН-структур как в магнитном поле, так и без него, при температурах, много меньших  $T_c$ , и при напряжениях, при которых туннельный ток много меньше тока в нормальном состоянии сверхпроводящей пленки, достаточно трех компонент: одноэлектронного тока, формула (1), и двух составляющих андреевского тока, формула (3). При этом независимо от ориентации магнитного поля относительно плоскости структуры, вклад одноэлектронного тока растет пропорционально квадрату поля из-за его влияния на сверхпроводящую щель. Проводимость, обязанная андреевскому току  $I_n$ , уменьшается из-за роста эффективной температуры. Изменение тока  $I_s$  можно описать уменьшением щели. Нам не известно работ, в которых рассматривается влияние магнитного поля на эту составляющую туннельного тока.

Чтобы сделать эти выводы еще более аргументированными, целесообразно провести эксперименты с аналогичными СИН-структурами с более тонким сверхпроводящим слоем и с шириной меньше глубины проникновения. Это позволит за счет ослабления влияния магнитного поля на одноэлектронный ток расширить область напряжений, в которой доминирует подщелевой ток и провести измерения при ортогональной ориентации поля при его однородности в пределах структуры.

Благодарности. Авторы благодарны Александру Федоровичу Андрееву за интерес к работе и полезные обсуждения. При выполнении работ использовано оборудование Уникальной научной установки № 352529 «Криоинтеграл».

Финансирование. Работа выполнена при финансовой поддержке Российского научного фонда, грант https://rscf.ru/project/23-79-00022/.

# ЛИТЕРАТУРА

- 1. J. L. Levine, Phys. Rev. 155, 373 (1967).
- J. Millstein, M. Tinkham, Phys. Rev. 158, 325 (1967).
- A. Anthore, H. Pothier, and D. Esteve, Phys. Rev. Lett. 90, 127001 (2003).
- М. А. Тарасов, В. С. Эдельман, Письма в ЖЭТФ, 101, 136 (2015).
- **5**. M. Tarasov, А. Gunbina, М. Fominsky, Α. Chekushkin, V. Vdovin, V. Koshelets, E. Sohina, А. Kalaboukhov, and V. Edelman. Electronics 10, 2894(2021);https://doi.org/10.3390/electronics10232894.

- T. Greibe, M. P.V. Stenberg, C. M. Wilson, T. Bauch, V. S. Shumeiko, and P. Delsing, Phys. Rev. Lett. 106, 097001 (2011).
- А. В. Селиверстов, М. А. Тарасов, В. С. Эдельман, ЖЭТФ 151, 752 (2017).
- I. Giaever and K. Megerle, Phys. Rev. 122, 1101 (1961).
- F. W. J. Hekking and Y. V. Nazarov, Phys. Rev. B 49, 6847 (1994).
- T. Faivre, D. S. Golubev, J. P. Pekola, Appl. Phys. Lett. 106, 182602 (2015).
- R. C. Dynes, V. Narayanamurti, and J. P. Garno, Phys. Rev. Lett. 41, 1509 (1978).
- A. V. Feshchenko, L. Casparis, I. M. Khaymovich, D. Maradan, O.-P. Saira, M. Palma, M. Meschke, J. P. Pekola, and D. M. Zumbühl, Phys. Rev. Appl. 4, 034001 (2015)
- **13**. В. С. Эдельман, ПТЭ, No 2, 159 (2009).
- 14. С. Kittel, Introduction to Solid State Physics, 4 edition, John Willey and Sons, Inc [Ч. Киттель, Введение в физику твердого тела, Наука, Москва (1978)].
- **15**. В.В. Шмидт, Введение в физику сверхпроводников, МЦМНО (2000).
- 16. M. R. Eskildsen, M. Kugler, G. Levy, S. Tanaka, J. Jun, S. M. Kazakov, J. Karpinski, and O. Fischer, Physica C: Superconductivity 385, 169 (2003).
- I. V. Grigorieva, W. Escoffier, J. Richardson, L. Y. Vinnikov, S. Dubonos, and V. Oboznov, Phys. Rev. Lett. 96, 077005 (2006).
- 18. A. F. Volkov and T. M. Klapwijk, Phys. Lett. A 168, 217 (1992); A. F. Volkov, Phys. Lett. A 174, 144 (1993); A.F. Volkov, A.V. Zaitsev, and T. M. Klapwijk, Physica C 210, 21 (1993); A. F. Volkov, Physica B 203, 267 (1994).
- 19. D. A. Dikin, M. J. Black, and V. Chandrasekhar, Phys. Rev. Lett. 87, 187003 (2001); https://doi.org/10.1103/PhysRevLett.87.187003.