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On the base of the critical analysis of existing models of strain induced precipitation of carbonitrides in austenite

of microalloyed steels, a new kinetic model is developed. The driving chemical force for nucleation of carboni-

trides can be calculated within the framework of Hillert and Staffansson’s regular solution theory, which treats

carbonitrides as a binary mixture of carbides and nitrides, allowing further analysis of the nucleation kinetics

using the formalism of Reiss’ binary nucleation theory. The nucleation rate calculated using this approach

can differ significantly from the predictions of earlier models that used classical nucleation theory for single-

component (unary) systems.
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1. INTRODUCTION

The microalloying elements, such as Nb, Ti, and V,
precipitate in austenite as carbides, nitrides, or car-
bonitrides during thermomechanical processing, and
contribute to the mechanical properties of the microal-
loyed steels via grain refinement, solid solution hard-
ening, and precipitation hardening [1]. It was revealed
that carbonitride precipitation in microalloyed austen-
ite takes place through diffusion-controlled nucleation
and growth. For this reason, the growth and coars-
ening mechanisms of carbonitride precipitation have
been extensively investigated [2, 3]. By contrast, nu-
cleation, the initial stage of the process, has received
much less attention to date, both theoretically and
experimentally.

The kinetics of carbonitride precipitation in de-
formed and undeformed austenite has been studied ex-
perimentally by a number of authors (e. g., [4–6]), who
have shown that deformation greatly accelerates pre-
cipitation. Dutta and Sellars [7, 8] proposed a kinetic
model for Nb(C, N) precipitation based on nucleation
theory and empirical analysis of available experimental
data, in order to predict the characteristics of strain
induced precipitation as a function of the steel com-
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position and thermomechanical processing variables.
For this reason, the focus of the nucleation model was
on strain effects, taken into account by adjusting the
modifying factor of the chemical driving force for ho-
mogeneous nucleation in undeformed austenite. How-
ever, the calculation of the chemical driving force itself,
which is determined by supersaturation of the solid so-
lution, has been simplified basing on classical nucle-
ation theory for single-component systems. In particu-
lar, it was assumed that the nitrogen concentration cN
at typical levels in commercial steels simply changes the
effective carbon concentration cC to (cC + 12cN/14).

This model deficiency was partially overcome by
Liu and Jonas [9], who more adequately considered
the influence of the Ti(C, N) nucleus composition on
the chemical driving force. However, their analysis was
based on the additional simplifying assumption that
the composition of nuclei is close to equilibrium val-
ues at the temperature of their formation. In turn,
this equilibrium composition was determined from a
simplified thermodynamic model based on the ideal so-
lution approximation, considering carbonitrides as an
ideal mixture of carbides and nitrides.

The first simplification of the model [9] was over-
come by Maugis and Gouné [10], who calculated the

composition of V(C, N) nuclei in the critical point of

the phase transformation and correspondingly modi-

fied the chemical driving force for homogeneous nucle-

ation. However, similar to [9], this was done in the
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ideal solution approximation for carbonitrides. Be-

sides, the pre-exponential kinetic factor of the nucle-

ation rate was taken from classical nucleation theory

for single-component systems (also similar to previous

models), whereas the number of nucleation sites was

chosen equal to the number of substitutional sites per

volume in austenite matrix, which can lead to overesti-

mation of homogeneous nucleation rate by many orders

of magnitude (as discussed below in Section 3).

A more comprehensive analysis of the equilibrium

composition for complex carbonitrides (Ti, Nb)(C, N)

in undeformed austenite was presented by Zou and

Kirkaldy [11], who used Hillert and Staffansson’s reg-

ular solution theory [12] (instead of the ideal solution

models discussed above) for evaluation of the chemi-

cal driving force for nucleation. However, the nucle-

ation kinetics (as well as the critical nucleus composi-

tion) was not considered, assuming that all nuclei are

formed immediately after quenching and are uniformly

distributed.

In order to calculate the homogeneous nucleation

rate of simple carbonitrides M(C, N) with M ≡ V, Ti

or Nb in undeformed austenite (as was observed, e. g.,

during the isothermal precipitation of Nb(C,N) in ex-

periments [5]), this work proposes a new kinetic model

based on the Reiss theory for homogeneous nucleation

in two-component (binary) systems [13]. The driving

chemical force for nucleation of simple carbonitrides

can be calculated within the framework of Hillert and

Staffansson’s regular solution theory (as shown in Sec-

tion 2), which treats carbonitrides as a binary mixture

of carbides and nitrides, allowing further analysis of the

nucleation kinetics (presented in Section 4) using the

formalism of Reiss’ binary nucleation theory (outlined

in Section 3). In order to take into account strain effects

in the case of deformed austenite, this driving force

can be modified, following [7], by the adjusting factor

(as discussed above), or, alternatively, by adjusting the

modifying factor for supersaturation (as discussed in

Section 2).

The developed approach of the binary nucleation

theory can be extended to mixed carbides, (M, M’)C,

or nitrides, (M, M’)N, in microalloyed steels (e. g.,

(V, Ti)C observed in [14]), whereas the most general

case of complex carbonitrides, (M,M’)(C,N), can be

analysed within the framework of Langer’s nucleation

theory [15], generalizing Reiss’ binary theory to multi-

component systems. These future developments of the

present model will be briefly discussed in the final part

of this work (Section 4.1).

2. MODEL FORMULATION

As explained, e. g., in [2, 3], the carbides and ni-

trides of microalloying elements M (niobium, titanium,

or vanadium) have fcc crystal structures and similar

lattice parameters; for this reason, they show complete

mutual solid solubility, and thus can be considered as

a mixture of MC and MN molecules (or ‘monomers’

of the pure carbide and nitride phases) with perfect

stoichiometry (usually assumed for simplicity). Corre-

spondingly, the Gibbs free energy of M(C, N) nucleus

formation takes the form

∆G0(na, nb) =

= na(µ
(p)
a − µ(γ)

a ) + nb(µ
(p)
b − µ

(γ)
b ) + 4πR2σ, (1)

where ni, i = a, b, are the numbers of MN and MC

monomers, respectively, in the spherical nucleus of

radius

R = (3/4π)1/3 (nava + nbvb)
1/3

with molecular volumes of the components vi; µ
(p)
i and

µ
(γ)
i are the chemical potentials of monomers in the

carbonitride particle and in the fcc (γ) steel matrix,

respectively; σ is the surface tension of the particle

(nucleus). Taking into account close values of molar

volumes of MC and MN molecules (which in the case of

the vanadium carbonitride, M ≡ V, are 10.8 cm3/mol

and 10.5 cm3/mol, respectively), it will further be as-

sumed for simplicity

va ≈ vb ≡ v ≈ 1.8 · 10−29 m3,

and thus

R ≈ (3v/4π)1/3(na + nb)
1/3.

In accordance with Hillert and Staffansson’s regular

solution theory [12], the Gibbs free energy of mixing of

carbides and nitrides in the carbonitride phase takes

the form

Gmix (na, nb) = naµ
(0)
a + nbµ

(0)
b + kTSab +Gab, (2)

where µ
(0)
i is the chemical potentials of pure nitride

and carbide phases, respectively; Sab is the entropy of

mixing given by the equation proposed by Temkin [16],

Sab = na ln
na

na + nb
+ nb ln

nb

na + nb
, (3)

andGab is the excess molar free energy of mixing, which

in an ordinary multicomponent system is often repre-

sented by a power series, and in the regular solution

model is given by the second power term

Gab = Lab
nanb

na + nb
(4)
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with the regular solution parameter Lab. This ap-

proximation, Eq. (4), becomes well-grounded in the

case when the concentration of one of the components

(say, b) in the particle is small,

xb ≡ nb/(na + nb) ≪ 1,

which is well satisfied, e. g., in the case of V(C, N) and

Ti(C, N) nuclei (see below), and, in fact, corresponds

to the weak solution model (with a linear dependence

Gab ≈ Labnb). Therefore,

µ(p)
a =

∂Gmix(na, nb)

∂na
=

= µ(0)
a + kT ln

na

na + nb
+ Lab

(
nb

na + nb

)2

, (5)

µ
(p)
b =

∂Gmix(na, nb)

∂nb
=

= µ
(0)
b + kT ln

nb

na + nb
+ Lab

(
na

na + nb

)2

. (6)

The atomic concentrations cj of alloying elements,

j = M, C, N, in the γ phase (austenite) are so small

that the chemical potential of these elements can be

written in the ideal solution approximation,

µ
(γ)
j = µ

(0)
j + kT ln cj (7)

and therefore, the chemical potentials of nitride and

carbide molecules in the matrix, subject to the equi-

librium conditions MN ↔ M+N and MC ↔ M+C, are

equal to

µ(γ)
a ≡ µ

(γ)
MN = µ

(γ)
M + µ

(γ)
N =

= µ
(0)
M + µ

(0)
N + kT ln(cMcN), (8)

µ
(γ)
b ≡ µ

(γ)
MC = µ

(γ)
M + µ

(γ)
C =

= µ
(0)
M + µ

(0)
C + kT ln(cMcC), (9)

whereas chemical potentials of pure nitride and carbide

phases are calculated, respectively, as

µ0
a = µ

(0)
M + µ

(0)
N + kT ln(c∗Mc

∗
N) =

= µ
(0)
M + µ

(0)
N + kT lnKa, (10)

where c∗M and c∗N are saturation concentrations of M

and N in austenite in equilibrium with pure nitride,

Ka = c∗Mc
∗
N is the solubility product of nitride, and

µ0
b = µ

(0)
M + µ

(0)
C + kT ln(c∗∗M c

∗∗
C ) =

= µ
(0)
M + µ

(0)
C + kT lnKb, (11)

where c∗∗M and c∗∗C are saturation concentrations of M

and N in austenite in equilibrium with pure carbide,

Ka = c∗∗M c
∗∗
C is the solubility product of carbide.

Therefore,

µ(p)
a − µ(γ)

a = kT lnKa + kT ln
na

na + nb
+

+ Lab

(
nb

na + nb

)2

− kT ln (cMcN) , (12)

µ
(p)
b − µ

(γ)
b = kT lnKb + kT ln

nb

na + nb
+

+ Lab

(
na

na + nb

)2

− kT ln (cMcC) , (13)

which, after substituting into Eq. (1), gives

∆G0 (na, nb) = na

[
−kT lnSa +

+ kT ln
na

na + nb
+ Lab

(
nb

na + nb

)2]
+

+nb

[
−kT lnSb+kT ln

nb

na + nb
+Lab

(
na

na + nb

)2]
+

+ 4πσ

(
3v

4π

)2/3

(na + nb)
2/3 , (14)

where

Sa ≡ cMcN/Ka = cMcN/
∗
Mc

∗
N

and

Sb ≡ cMcC/Kb = cMcC/c
∗∗
M c

∗∗
C

are supersaturations.

The morphology and crystallography of carbide pre-

cipitates in austenite steel were studied by transmission

electron microscope (TEM) observation [17, 18], where

it was shown that VC particles, precipitated preferen-

tially on dislocations in the austenite matrix during

aging at 1173 K, display a cube-on-cube orientation

with austenite. The interface between the matrix and

nucleated particles is initially coherent, but becomes

partly coherent during growth. Previously, TEM im-

ages of coherence strain field associated with vanadium

carbide disc and spherical particles were observed by

Baker [19], who noted that the limited number of ob-

servations of coherent precipitates in austenite was due

to the very small size at which they lose coherence [20].

TEM observations in the tests on precipitation of

NbC in austenite [21] also showed that fine particles

(of the mean size ∼ 5 nm) formed during the initial time

of post-deformation holding of 10 s at 1200 K were co-

herent with the austenite matrix. The coherency was
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lost after holding time of 30 s, when the mean size in-

creased to ∼ 8 nm, displaying an increasing number

of misfit dislocations, in accordance with the general

understanding of nucleation in solids (cf. [22]). Since

carbides, nitrides and carbonitrides of microalloying el-

ements Ti, Nb or V have similar to NbC fcc crystal

structures and lattice parameters, the same conclusion

can be generalized to the nucleation of all these phases

(as also confirmed in [1]).

For a slightly oversized coherent spherical inclusion

with volume Vp = (na + nb) v, which is inserted in the

spherical cavity with volume Vm in the (unstrained)

matrix with the atomic volume vm ≈ 1.23·10−29 m3,

the misfit strain δ is determined by the relation

(Vp − Vm) /Vp = (v − vm) /v ≈ 3δ,

which for vanadium carbonitrides with

v ≈ 1.8·10−29 m3 (see above) is δ ≈ 0.1 ≪ 1.

If the matrix and the precipitate are elastically iden-

tical (which is not the case for carbonitrides in steel),

the elastic strain energy associated with such inclusion

is determined by the misfit strain as

∆Gel=2µ

(
1 + ν

1− ν

)
δ2Vp=2µ

(
1 + ν

1− ν

)
δ2v (na+nb) ,

where µ is the shear modulus, and ν is Poisson’s ratio,

whereas for carbonitrides, which are stiffer than the

matrix, the elastic strain energy will somewhat increase

(cf. [23]). This energy contributes to the formation free

energy, Eq. (14), and, being proportional to (na + nb),

effectively modify supersaturations,

Sa,b → S̃a,b = Sa,b exp

[
−2µ

(
1 + ν

1− ν

)
δ2v/kT

]
.

Consequently, elastic strains can significantly reduce

or even completely suppress carbonitride nucleation, in

agreement with experimental observations that nucle-

ation in undeformed austenite becomes extremely dif-

ficult [1–3].

However, in deformed austenite, the elastic strain

contribution can be reduced, if an oversized precipitate

nucleates on the dilatation side of an edge dislocation,

as follows from the Dollins – Barnett theory [24, 25].

Therefore, in the simplest approach, strain effects can

be taken into account by adjusting the modifying factor

λ < 1 for supersaturations, Sa,b → S̃a,b = λSa,b (along

with changing the density of nucleation sites, see Sec-

tion 3.1 below), and for this reason, only homogeneous

nucleation (without strain effects) will be analysed fur-

ther (with comments and corrections for the more re-

alistic case where necessary). In fact, this approach

is an alternative to the approach used in [7] (which,

however, assumed incoherent nucleation), where strain

effects (from dislocations) were taken into account by

adjusting the modifying factor of the chemical driving

force for homogeneous nucleation.

The critical nucleus (n∗
a, n

∗
b) is determined by mini-

mization of Eq. (14) with respect to the two variables,

∂∆G0 (n
∗
a, n

∗
b)

∂na
=
∂∆G0 (n

∗
a, n

∗
b)

∂nb
= 0,

which leads to the expressions

− kT lnSa + kT ln
n∗
a

n∗
a + n∗

b

+

+ Lab

(
n∗
b

n∗
a + n∗

b

)2

+
2σv

R∗ = 0, (15)

and

− kT lnSb + kT ln
n∗
b

n∗
a + n∗

b

+

+ Lab

(
n∗
a

n∗
a + n∗

b

)2

+
2σv

R∗ = 0. (16)

Superposition of Eqs (15) and (16) gives

kT ln

(
Sb

Sa

)
+ kT ln

n∗
a

n∗
b

− Lab

(
n∗
a−n∗b

n∗
a + n∗

b

)
= 0, (17)

which under the condition n∗
b≪ n∗a, justifying Eq. (4),

takes the form

ln
n∗
b

n∗
a

≈ −Lab

kT
− ln

(
Sa

Sb

)
, (18)

or

α ≡ n∗
b

n∗
a

≈ Sb

Sa
exp

(
−Lab

kT

)
=
KacC
KbcN

exp

(
−Lab

kT

)
.

(19)

Substituting Eq. (19) into Eq. (15), we obtain for

the critical nucleus size to the first approximation in

α ≪ 1,

n∗
a + n∗

b ≈ σ3v2

(kT )3
32π

3 (lnSa + α)
, (20)

or

R∗ ≈ 2σv

kT (lnSa + α)
. (21)

After substituting Eqs (19) and (20) into Eq. (14), the

chemical free energy of the critical nucleus formation

can be calculated as

1

kT
∆G0 (n

∗
a, n

∗
b) ≈

16π

3

σ3v2

(kT )3 (lnSa + α)
2 . (22)

531



M. S. Veshchunov ЖЭТФ, том 167, вып. 4, 2025

In Eqs. (20)–(22), it was additionally assumed that

supersaturation Sa does not approach too close to its

critical value (determined by the pole of Eq. (20)), i. e.,

|lnSa + α| ≫ α2Lab/kT ,

and for this reason, the term proportional to α2, aris-

ing in the next order approximation in Eq. (17), can

be neglected in the denominator.

In this case, the critical supersaturation S∗
a is char-

acterized by a small negative value of lnS∗
a ≈ −α. Cor-

respondingly, the nucleation occurs at

Sa ≥ S∗
a ≈ exp(−α) < 1,

i. e., the onset of nucleation is shifted to the undersat-

urated solution of nitride monomers.

The regular solution parameter Lab = −4260 J/mol

was determined for C–N mixing in Ti carbonitrides

[26, 27]. Commonly (e. g., in [11, 28]) the assumption

is used that the C–N mixing should be approximately

the same in different carbonitrides, due to the general

similarity of the systems.

The solubility products for pure VC and VN pre-

cipitation are taken also from [27], where ‘best fit’ re-

lationships were obtained using the data of several in-

vestigators,

lgKa = 3.02− 7840/T [K], lgKb = 6.72− 9500/T [ K]

(where concentrations Ci in the solubility products are

in wt%). For typical V microalloyed steel composition,

CV = 0.215wt%, CC = 0.19wt%, CN = 0.015wt%

(e. g., used in calculations [10]) at T = 1200 K one

obtains

Lab/kT ≈ 0.43, Ka ≈ 3.2 · 10−4, Kb ≈ 6.3 · 10−2,

Sa ≈ 10, Sb ≈ 0.65,

giving

Sb/Sa ≈ 0.065,

which does not depend on the modifying factor λ for

Sa,b (and thus is the same for nuclei in deformed and

undeformed matrix).

Substitution of these values into Eq. (19) leads

to α ≈ 0.041 (regardless of the deformation state of

austenite), which self-consistently confirms the above

assumption n∗
b/n

∗
a ≈ α ≪ 1, and thus gives for the

composition z of the critical nucleus, V (CzN1−z), small

value,

z = x∗b = n∗
b/
(
n∗
a + n∗

b

)
= α/(1 + α) ≈ 0.04.

This value is notably smaller than the value ≈ 0.1 cal-

culated in [10] for the same system, but considered in

the ideal solution approximation, assuming Lab = 0.

For Ti(C, N) in austenite with

CTi = 0.215wt%, CC = 0.1wt%, CN = 0.01wt%

and

lgKa = 3.82− 15020/T, lgKb = 5.3− 10475/T

(from [2, 3]) at T = 1200 K one obtains

Ka ≈ 1.2 · 10−9, Kb ≈ 3.7 · 10−4,

Sa ≈ 1.8 · 106, Sb ≈ 58,

giving

Sb/Sa ≈ 3 · 10−5,

and the parameter α turns to be extremely small,

α ≈ 1.3 · 10−5 (and thus x∗b ≈ 1.3 · 10−5), which means

that the composition of nucleated carbonitrides practi-

cally coincides with that of pure nitrides. Correspond-

ingly, it might be expected that the nucleation kinetic

of Ti(C, N) precipitates is close to that of pure nitrides

(as will be confirmed below in Section 4).

For Nb(C, N) in austenite with

CC/CN ≈ 10,

lgKa = 2.8− 8500/T, lgKb = 3.42− 7900/T

(from [2,3]), the parameter α is not very small, α≈0.73

(and thus x∗b ≈ 0.42), which makes the above results,

Eqs. (19)–(22), obtained assuming α ≪ 1, only qual-

itatively correct. For this reason, the nucleation of

Nb(C, N) will not be considered further.

It should be noted that the composition of the crit-

ical V(C, N) nucleus markedly differs from the equilib-

rium composition calculated in [29] (with the same val-

ues of the model parameters Ka, Kb and Lab). For in-

stance, for 900◦ C, used in calculations [29], the equilib-

rium composition of vanadium carbonitrides in austen-

ite with CV = 0.2 wt%, CC = 0.1 wt%, CN = 0.01 wt%

was calculated as x
(eq)
b = 0.39, whereas the composition

of the critical nucleus can be evaluated from Eq. (19)

as x∗b = 0.06. This means that the particle composition

substantially changes during the growth and coarsening

stages of the precipitation process, which, in particu-

lar, contradicts the assumption of the models [9, 11]

that the composition of nuclei is close to equilibrium

values at the temperature of their formation.
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3. BINARY NUCLEATION THEORY

The problem of nucleation of carbonitrides, which

can be considered as a mixture of MC and MN

monomers, is an example of homogeneous nucleation

in binary systems. However, the classical nucleation

theory [30–32] was developed in relation to single-

component (unary) systems, and for this reason, is

valid only for pure carbides MC or nitrides MN.

The classical nucleation theory was generalized to

binary systems by Reiss [13]. In his theory, the par-

ent phase is thought of as a mixture of molecules

(monomers) of two components X and Y with number

densities Nx and Ny, respectively, together with clus-

ters of all sizes and compositions. A particular molec-

ular cluster is characterized by the numbers of single

molecules (or monomers) x and y of species X and Y,

respectively, that it contains. Reiss showed that the

critical point of unstable equilibrium (associated with

the phase transition) corresponds in this case to a sad-

dle point (x∗, y∗) on the free energy surface ∆G0(x, y).

He characterized the transition by a two-dimensional

steady state flow J(x, y) of clusters in the phase space

of cluster sizes x, y, which is pronounced in one direc-

tion (the axis of the pass x′) that, in comparison with

it, any lateral flow (in the perpendicular direction y′)
may be neglected, i. e., Jy′ ≈ 0. Due to the steady state

condition,

divJ = ∂Jx′/∂x′ + ∂Jy′/∂y′ ≈ ∂Jx′/∂x′ = 0,

this leads to

Jx′ ≈ J(y′),

which was calculated by Reiss as

J (y′ − y∗) = f0 (x
∗, y∗)

β∗
xβ

∗
y

(
1 + tan2 θ

)

β∗
y + β∗

x tan
2 θ

×

×
( |D′

11|
πkT

)1/2

exp

[
−|detD| (y′ − y∗)2

kT |D′
11|

]
, (23)

where f0(x, y) is the equilibrium size distribution

function

f0(x, y) = F exp

[
−∆G0(x, y)

kT

]
, (24)

F is the so called number density of potential nucle-

ation sites discussed below in Section 3.1; θ is the an-

gle between the original axis x and the axis of the pass

x′; β∗
i = βi (x

∗, y∗), i = x, y, are the arrival rates of

monomers X and Y to the critical cluster (x∗, y∗) of

radius R∗;

Dij = (1/2)∂2∆G0 (x
∗, y∗)/∂xi∂xj

are elements of the matrix D = (Dij), which determi-

nant is negative (in accordance with the properties of

the saddle point),

detD = D11D22 −D2
12 < 0;

D′
11 =

1

2

∂2∆G0 (x
′, y′)

∂x′2

∣∣∣∣
x∗,y∗

=

= D11 cos
2 θ +D22 sin

2 θ + 2D12 sin θ cos θ, (25)

is the second derivative of ∆G0 at the critical point

in the direction x′ of the orthogonal coordinate system

(x′, y′) obtained by rotating the original coordinate sys-

tem (x, y) through the angle θ; this derivative should

be negative, D′
11 < 0, to provide a maximum of the

free energy at the critical point in the direction of the

x′-axis.

Therefore, the nucleation rate, defined as the total

flux of clusters through the critical zone,

Ṅ =

∞∫

−∞

J (y′ − y∗) dy′, (26)

was calculated by Reiss by substituting Eq. (23) into

Eq. (26) as

Ṅ ≈ −f0 (x∗, y∗)
β∗
xβ

∗
y

(
1 + tan2 θ

)

β∗
y + β∗

x tan
2 θ

×

×D′
11

(
1

D2
12 −D11D22

)1/2

. (27)

In the Reiss theory, the axis of the pass x′ runs

in the direction of the steepest descent of the free en-

ergy surface ∆G0(x, y), which for this reason was de-

termined in the thermodynamic approach (i. e., solely

from the properties of the free energy). This assump-

tion was modified by Langer [15] (with subsequent reit-

eration by Stauffer [33]), who corrected the orientation

of the flux vector in the direction parallel to the di-

rection of the unstable mode at the saddle point (the

new axis of the pass x′). The modified value of θ was

explicitly calculated in [33] and later refined in [34] as

tan θ = s+
(
r + s2

)1/2
, if D21 < 0, (28)

and

tan θ = s−
(
r + s2

)1/2
, if D21 > 0, (29)

where

r = β∗
y/β

∗
x, s = (dx − rdy)/2,
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dx = −D11/D12, dy = −D22/D12.

As explained in [2, 3], measurements of diffusion

coefficients in austenite show that in the temperature

range of interest, diffusion of carbon and nitrogen is 5–7

orders of magnitude faster than diffusion of microally-

ing elements M. Thus, the arrival rates in Eq. (23) are

controlled by the transport of elements M,

β∗
a,b = 4πDMcMR

∗Ω−1, (30)

where Ω, cM and DM are atomic volume, atomic con-

centration and diffusivity, respectively, of element M in

austenite, and for this reason,

r =
β∗
y

β∗
x

= 1. (31)

3.1. Number density of potential nucleation

sites F

In the Reiss theory, given the total number den-

sity Nxy of spherical clusters XxYy consisting of (x, y)

monomers is small compared to the number densities

Nx, Ny of single molecules (monomers) X and Y in

the parent phase (consisting of molecules X and Y),

Nxy ≪ Nx, Ny, the pre-exponential factor F of the

equilibrium size distribution function in Eq. (24) takes

the form

F = Nx +Ny. (32)

This approach was a generalization of the Frenkel

model [35], which characterizes the size distribution

of clusters Xx in a single-component solid solution of

molecules X in the matrix Y with the number density

of nucleation sites F = Nx.

The extension of Eq. (32) to the lattice gas with

Nx, Ny ≪ N0, where N0 = Ω−1 is the number density

of lattice sites for monomers in the parent phase (i. e.,

in the presence of high concentration of vacant sites,

Nv ≡ N0 −Nx −Ny ≈ N0), gives

F = N0 (cx + cy) = Ω−1 (cx + cy) , (33)

where cx = Nx/N0 ≪ 1 and cy = Ny/N0 ≪ 1 are

concentrations of monomers in the matrix.

This expression, Eq. (33), was widely criticized in

the literature. In particular, Lothe and Pound [36] sug-

gested that degrees of freedom corresponding to the

translation of clusters have been neglected in this ex-

pression. As a result, they predicted that the number

density of potential nucleation centres F is equal to the

number density of lattice sites N0, rather than the total

number density of solute monomers, Eq. (32), leading

to a large discrepancy with the previous approach. A

similar conclusion was made in a large number of sub-

sequent works, reviewed and supported in [37].

This disagreement (‘translation paradox’) was dis-

cussed by Reiss and Katz [38], who evaluated the parti-

tion function of the system taking into account permu-

tations of monomers among clusters and showed that

Lothe and Pound’s correction to the nucleation the-

ory does not arise (for unary systems). However, later

Katz disregarded his previous results [38] and modified

the Frenkel model similarly to Lothe and Pound in his

subsequent works (e. g., in [39, 40]).

Therefore, the contradiction between different ap-

proaches has not been completely resolved and required

further analysis. Such an analysis for unary systems

(consisting of Nx monomers and Nn clusters Xn, with

Nn ≪ Nx ≪ N0) was carried out in the recent work

of the author [41] within the framework of the general

thermodynamic approach, taking into account the in-

teraction of monomers with clusters, Xn ± X = Xn±1

(considered in the statistical mechanics approach [38]

as permutations, and disregarded in Lothe and Pound’s

model [36]). The excess (or mixing) entropy calcu-

lated thermodynamically in [41] was consistent with the

value calculated in the statistical approach by Reiss,

Kegel and Katz [42], which confirmed the original con-

clusion of [38].

In particular, it was shown in [41] (for unary sys-

tems) that erroneous prediction, F = N0, of the Lothe

and Pound model is associated with considering a mix-

ture of monomers and clusters in the ideal gas approxi-

mation, neglecting their interactions; whereas their in-

teractions can be taken into account in the weak so-

lution approximation, which leads to F = Nx. A gen-

eralization of this consideration to binary gas systems

(where Nx, Ny and N0 correspond to two vapours and

carrier gas densities, respectively), leading to Eq. (32),

was given in the author’s paper [43], and is extended

to binary solid solutions in the Appendix A.

In the case of heterogeneous nucleation on extended

defects (such as (sub)grain boundaries or dislocations)

in the deformed matrix, N0 in Eq. (33) corresponds

to the number density of lattice sites on these defects

(e. g., for dislocations, N0 ≈ ρd/a, where ρd is the to-

tal dislocation line density and a ≈ Ω1/3 is the lattice

parameter), whereas cx and cy are relative concentra-

tions of monomers on these defects (which should be

further assessed by taking into account the effects of

segregation).
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4. RESULTS AND DISCUSSION

When applying the Reiss theory to the nucleation

of V(C, N) carbonitrides, the index x will be assigned

to nitrides (i. e., x = a, in designations of Section 2)

and the index y to carbides (i. e., y = b).

Results of calculations of the elements of the matrix

D = (Dij) and other related parameters of Eq. (23)

for the Gibbs energy of nucleus formation, Eq. (14),

are presented in the Appendix B. In particular, it is

confirmed that detD < 0 (i. e., the critical point is a

saddle), and thus

(− detD)1/2 ≈ (kT )4

64πσ3v2
(lnSa + α)3 ×

×
[
3

(
1 +

lnSa

α

)]1/2
, (34)

and that

D12 ≈ −3(kT )4 (lnSa + α)3/(64πσ3v2)

is negative above the critical supersaturation,

Sa > S∗
a ≈ exp(−α),

and thus Eq. (28) is valid.

For typical composition of V microalloyed steels,

calculations can be simplified (as shown in the Ap-

pendix B), leading to tan θ ≪ 1. In this case, Eq. (25)

takes the form

D′
11 ≈ (kT )4

64πσ3v2
(lnSa + α)

3 ×

×
[
(2α− lnSa)−

α

3
[(3 + lnSa)]

2
]
, (35)

which is always negative and thus provides a maximum

for the free energy at the critical point in the direction

of the n′
a-axis (as assumed in the Reiss theory), and

the kinetic factor Eq. (27) takes the form

β∗
xβ

∗
y

(
1 + tan2 θ

)

β∗
y + β∗

x tan
2 θ

≈ β∗
a =

= 4πDMcMR
∗Ω−1 ≈ 4πDMcM

2σ

kT lnSa

v

Ω
. (36)

In application to carbonitrides consisting of

‘monomers’ of two types, MN and MC, Eq. (33) takes

the form

F = (cMN + cMC)Ω
−1, (37)

where cMN and cMC are molecular concentrations of

MN and MC in austenite, respectively, which are in

equilibrium with alloying components M, N and C

in austenite, Eqs (8) and (9), and thus obey the

relationships

cMcN = K(d)
a cMN, (38)

and

cMcC = K
(d)
b cMC, (39)

where K
(d)
a,b is the dissociation constants, which are nor-

mally not small, and thus the concentrations of MN and

MC molecules are very small, cMN, cMC ≪ cM, cN, cC
(and can be generally neglected in the total balance of

concentrations in the austenite matrix).

Dissociation constants, regularly measured in aque-

ous solutions (see, e. g., [44]), are little known for solid

solutions. For this reason, they can be roughly eval-

uated by extrapolating the thermodynamic model of

nitride (or carbide) particles to dimers MN (or MC) in

the approach, commonly used in the cluster dynamics

modelling (see the Appendix C).

As opposed to the kinetic factor, Eq. (36), which

is completely determined by diffusion transfer of M

species through the matrix, Eq. (37) has a purely ther-

modynamic nature (as shown in the Appendix A) and

thus does not depend on the kinetic mechanism of

mass transfer at the interface between two phases (car-

ried out either through the transfer of MN (or MC)

molecules, or through the congruent (1:1) transfer of

M and N (or C) species).

Substituting Eqs (22), (24), (33)-(38) in Eq. (27)

one obtains for the nucleation rate

Ṅ ≈ 8πDMc
2
M

(
cN

K
(d)
a

+
cC

K
(d)
b

)
σv

kTΩ2

(
α

3 lnSa

)1/2

×

×
[
lnSa − 2α+

α

3
[(3 + lnSa)]

2
]
×

× exp

[
−16π

3

σ3v2

(kT )3 (lnSa + α)
2

]
. (40)

This expression significantly differs from the expres-

sion for homogeneous nucleation in a one-component

(unary) system (used, e. g., in [7–10]). The reason for

such a contradiction was discussed in the author’s pa-

per [43], where it was shown that Reiss’ expression for

the binary nucleation rate, Eq. (27), is valid if

|detD|
|D′

11|
≪ πkT,

which corresponds to

ln3 Sa ≪ 64π2σ3v2α/(3(kT )3).

6 ЖЭТФ, вып. 4
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For V(C, N) with ln3 Sa ≈ 12 (as estimated above in

Section 2 for the unstressed case) this inequality takes

the form ln3 Sa ≪ 102 and thus is satisfied.

Strain effects, which effectively reduce supersatura-

tion, only exacerbate this inequality, and thus Eq. (40)

with the effective supersaturation S̃a = λSa (defined

in Section 2) can also be justified for deformed austen-

ite with heterogeneous nucleation of carbonitrides on

dislocations, leading to

Ṅ ≈ 8πDMcM (c̃MN + c̃MC) ρd
σv

kTΩ4/3

(
α

3 lnSa

)1/2

×

×
[
ln S̃a − 2α+

α

3

[(
3 + ln S̃a

)]2]
×

× exp


−

16π

3

σ3v2

(kT )3
(
ln S̃a + α

)2


 , (41)

where ρd is the dislocation line density, and c̃MN, c̃MC

are relative concentrations of MN and MC molecules

on these defects (as discussed in Section 3.1), assessed

by taking into account the effects of segregation.

In the opposite limit,

|detD|/|D′
11| ≫ πkT,

or

ln3 Sa ≫ 64π2σ3v2α/(3(kT )3),

corresponding to the condition of a narrow saddle

point passage width (so-called ‘quasi-classical approxi-

mation’), when only one (‘classical’) trajectory (passing

through the critical point (x∗, y∗)) gives contribution to

the integral in Eq. (26), the nucleation rate reduces to

Ṅ0 ≈ J(0) = F
β∗
xβ

∗
y

(
1 + tan2 θ

)

β∗
y + β∗

x tan
2 θ

( |D′
11|

πkT

)1/2

×

× exp

(
−∆G∗

0

kT

)
≈ Fβ∗

xZ exp

(
−∆G∗

0

kT

)
, (42)

where

Z =

( |D′
11|

πkT

)1/2

≈
( |D11|
πkT

)1/2

=

=

(
− 1

2πkT

∂2∆G0 (x
∗, y∗)

∂x2

)1/2

≈ (kT )3/2 ln2 Sa

8πσ3/2v
(43)

converges to the Zeldovich factor in the unary sys-

tem [32] (considering that according to Eq. (9),

α ∝ S−1
a decreases with increasing Sa at a fixed Sb),

and consequently, Eq. (42) consistently converges to

the nucleation rate in the classical nucleation theory.

As a result, Eq. (41) converges to the expression for

unary nucleation,

Ṅ0 = (cMN + cMC)Ω
−1β∗

aZ exp

(
−∆G∗

0

kT

)
≈

≈ DMc
2
M

(
cN

K
(d)
a

+
cC

K
(d)
b

)
(kT )1/2 lnSa

σ1/2Ω2
×

× exp

[
−16π

3

σ3v2

(kT )3 (lnSa + α)2

]
, (44)

which differs from the binary nucleation rate calculated

from Eq. (40) by the factor

Ṅ

Ṅ0

≈ 8πσ3/2v

(kT )3/2 ln3/2 Sa

(α
3

)1/2
×

×
[
lnSa +

α

3
(3 + lnSa)

2

]
≈ 10 ≫ 1, (45)

where σ ≈ 0.5 J/m2, lnSa ≈ 2.3 and α ≈ 0.04 for

V(C, N) is assumed.

On the other hand, for Ti (CzN1−z) with

α ≈ 1.3 · 10−5 and lnSa ≈ 14.4 (estimated in

Section 2), the condition of applicability of the unary

limit takes the form ln3 Sa ≫ 0.1, which thus is valid.

This conclusion is consistent with the above result

for the composition of nucleated Ti carbonitrides,

which is very close to pure nitrides, z ≈ 1.3 · 10−5 (see

Section 2).

In application to typical V microalloyed steels

at T ≈ 1200 K with cM ≡ cV = 2.36 · 10−3

(corresponding to CV = 0.215 wt%),

cC = 8.87 · 10−3 (corresponding to CC = 0.19 wt%),

cN = 6 · 10−4 (corresponding to CN = 0.015 wt%),

DV = 0.25 · 10−4 exp (−264200/RT ) = 8 · 10−17 m2/s

(from [2]), σ ≈ 0.5 J/m2 (used in [7, 10]), and

dissociation constants estimated in the Appendix

C as K
(d)
a ≈ 1, K

(d)
b ≈ 0.5 · 102, Eq. (40) gives

Ṅ ≈ 1013 m−3·s−1 (which will be less, if strain effects

and reduced density of nucleation sites are taken into

account, as presented in Eq. (41)).

In the lack of direct measurements of the nucleation

rate of V(C, N) precipitates, this value can be compared

(qualitatively) with available data for NbC precipitates

in deformed Nb microalloyed austenite from [21]. In

these tests, the concentration of small coherent precipi-

tates (of ∼ 2-5 nm size), observed after τ ≈ 30 s holding

at 1200 K, was ∼ 1021 m−3, which gives a much higher

value of Ṅ ∼ 3 · 1019 m−3·s−1. However, Eq. (40) is

very sensitive to the value of surface tension, and for

σ ≈ 0.3 J/m2 (used in [11]) the nucleation rate be-

comes overestimated, Ṅ ≈ 1022 m−3·s−1. Therefore, a
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more reasonable value can be obtained from Eq. (41),

which takes into account strain effects (and the reduc-

tion of the number of nucleation sites) that reduce the

nucleation rate.

A more direct comparison with typical experi-

ments, in which precipitation-to-temperature (PTT)

diagrams have been measured, requires coupling the de-

veloped nucleation model with the growth-coarsening

and recovery-recrystallization models, as was done,

e. g., in [8,45], which can help to improve numerical al-

gorithms from the literature by applying the advanced

nucleation model.

4.1. Nucleation of complex carbonitrides

The above developed model can be equally applied

to the nucleation of complex carbides (or nitrides),

(M,M’)C (or (M,M’)N), if MC and M’C (MN and M’N)

show complete mutual solid solubility, and thus can

be considered as a mixture of MC and M’C (MN and

M’N) molecules (or ‘monomers’ of two carbide (nitride)

phases). In these cases, the index a should be assigned

in the above theory to MC (or MN), and the index b

to M’C (or M’N).

In the case of complex carbonitrides (M,M’)(C,N),

which form homogeneous solutions (i. e., without phase

separation) and thus can be considered as a (regular)

mixture of monomers of four types, MC, MN, M’C and

M’N, the above theory should be generalized to four-

component systems following Langer’s multicomponent

approach [15]. In this approach, the nucleation rate is

calculated as

Ṅ =
|χ|

|detD|1/2
F exp

(
−∆G∗

0

kT

)
, (46)

where the Gibbs free energy is a function of

X = (x1, x2, x3, x4) with indices 1, 2, 3, 4, numer-

ating monomers MC, MN, M’C and M’N, respectively,

which generalizes Eq. (14) similarly to [29]; D = (Dij)

is the matrix with elements

Dij = (1/2)∂2∆G0 (X
∗)/∂xi∂xj

calculated in the critical point X∗ = (x∗1, x
∗
2, x

∗
3, x

∗
4);

χ is the negative eigenvalue of the matrix βD, and

β = (β1, β2, β3, β4) is the matrix of the arrival rates of

monomers.

Generalization of the calculations presented in Sec-

tion 4 to this case is straightforward, but involves a

wide range of simplifications (related to the weak so-

lution approximation for all four components) and un-

known parameters, and, in the absence of experimen-

tal data on nucleation rates, was not attempted in this

work.

5. CONCLUSIONS

On the base of the critical analysis of existing mod-

els of strain induced precipitation of simple carboni-

trides in microalloyed austenite, a new kinetic model is

developed. In this model, the driving chemical force for

nucleation in undeformed austeinte is calculated within

the framework of Hillert and Staffansson’s regular solu-

tion theory [12], with additional consideration of elas-

tic strain energy of coherent precipitates, which effec-

tively modifies supersaturation of the solid solution by

a strain-dependent factor. In deformed austenite, the

elastic strain contribution to the free energy of nucleus

formation can be reduced, if precipitates nucleate het-

erogeneously on dislocations (as observed in numerous

tests), which can be taken into account by adjusting the

modifying factor for supersaturation. This approach is

an alternative to the approach used in the literature

(e. g., [7]), where strain effects (from dislocations) were

taken into account by adjusting the modifying factor of

the chemical driving force for homogeneous nucleation

(however, with the additional assumption that nuclei

are incoherent with the matrix).

It is shown that the main simplification of the the-

ory of regular solutions of Hillert and Staffansson, in

which the excess molar free energy of mixing of carbides

and nitrides in the carbonitride phase is given by a

second-order term, can be justified in relation to V and

Ti carbonitrides, for which the excess molar free en-

ergy of mixing can be described with good accuracy in

the weak solution approximation. This allows further

analysis of the kinetics of carbonitride nucleation using

the formalism of Reiss’ binary nucleation theory [13]

as applied to weak solution, avoiding simplifications of

the earlier models based on classical nucleation theory

for single-component (unary) systems.

In particular, it is shown that the composition of

V(C, N) nuclei differs significantly from equilibrium val-

ues at the temperature of their formation (in contrast

to the assumption of the earlier models [9,11]), as well

as from the composition calculated in [10] within the

ideal mixture model. Besides, the pre-exponential ki-

netic factor of the V(C, N) nucleation rate is underes-

timated in unary models, whereas the number of nu-

cleation sites (pre-exponential thermodynamic factor)

can be significantly (by several orders of magnitude)

overestimated in the existing models.

The developed approach of the binary nucleation

theory can be extended to mixed carbides, (M,M’)C,

whereas the most general case of complex carbonitrides,

(M,M’)(C,N), can be analysed within the framework

of Langer’s nucleation theory [15], which generalizes
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Reiss’ binary theory to multicomponent systems; these

future developments of the model are briefly discussed.

APPENDIX A. CALCULATION OF THE
NUMBER DENSITY OF NUCLEATION SITES

IN THE SOLID SOLUTION

Although the Lothe and Pound approach [36] cor-

rectly identified the limitations of the earlier approach,

in which the presence of vacancy sites in the lattice gas

was ignored, it inherited the main drawback of this ap-

proach, considering the system of monomers and clus-

ters as an ideal mixture.

Indeed, such consideration is valid only in the case

of Boltzmann statistics (to which the ideal gas obeys),

when all particles are distributed over different ther-

modynamic states completely independently of each

other [46]. For clusters of finite sizes, their interac-

tion with monomers (described in the statistical me-

chanics approach [38] by permutations of monomers

among clusters), cannot be neglected, since clusters, in

contrast to monomers, cannot be considered as point

particles.

In accordance with general thermodynamics, the

additivity of thermodynamic quantities, such as free

energy or entropy, is preserved only as long as the in-

teraction between different parts of the system is negli-

gible, as in the case of ideal gas mixtures, for which, for

example, the entropy of the mixture is equal to the sum

of the entropies of each of gases [46]. Therefore, for a

non-ideal mixture of several substances (for example,

monomers and clusters), the entropy is no longer equal

to the sum of the entropies of each of the substances.

To find the excess entropy of a mixture of monomers

and clusters, let Φ0 (P, T,Nx, Ny) be the Gibbs free en-

ergy of an ideal solid solution (the metastable phase)

in the crystal matrix (with the number density of lat-

tice sites N0) of monomers X and Y (with the number

densities Nx and Ny, respectively), whose chemical po-

tentials are µi (P, T, ci) = ψi(P, T ) + kT ln ci, where

i = x, y, and ci = Ni/N0 ≪ 1. Let αxy denote the

small change which would occur in the free energy if one

spherical cluster XxYy (a nucleus of the new phase),

consisting of x monomers X and y monomers Y, was

added to the system. In the thermodynamic approach,

clusters are considered as ‘macroscopic’ subsystems (or

‘bodies’) with nx, ny ≫ 1, homogeneously distributed

in the ‘external medium’ (the metastable phase).

Due to the interactions of clusters with monomers,

XxYy ± X = Xx±1Yy, and XxYy ± Y = XxYy±1, αxy

should be sought in the weak solution approximation as

a function ofNx andNy, i. e., αxy = αxy (P, T,Nx, Ny).

Due to Nxy ≪ Nx, Ny, where Nxy is the (macroscopic)

number density of clusters of size (x, y), interactions

between clusters can be neglected, and thus the free

energy takes the form

Φ = Nxµx +Nyµy +Nxyαxy (P, T,Nx, Ny) +

+ kT ln (Nxy!) , (A.1)

where the translational entropy term,

kT ln (Nxy!) ≈ kTNxy ln (Nxy/e) ,

takes into account that all (spherical) clusters of one

size (x, y) are identical and, being ‘macroscopic bod-

ies’, are homogeneously distributed in the ‘external

medium’. Accordingly, Eq. (A.1) can be represented

in the form

Φ = Nxµx +Nyµy+

+ kTNxy ln

[
Nxy

e
exp

(αxy

kT

)]
. (A.2)

This consideration is principally different from the

Lothe and Pound approach [36], where clusters were

considered as a new ideal lattice gas Z with density

Nz = Nxy ≪ N0 added to the existing lattice gas mix-

ture of monomers X and Y, and, therefore, become a

constituent part of the ‘external medium’. With this

approach the configurational entropy (which enters Φ

through the chemical potential terms) is transformed

from

kT ln

(
N0!

Nv!Nx!Ny!

)
≈ −kT

[
Nv ln

(
Nv

N0

)
+

+Nx ln

(
Nx

N0

)
+Ny ln

(
Ny

N0

)]
≈

≈ −kT
[
Nx ln

(
Nx

N0

)
+Ny ln

(
Ny

N0

)]
,

where

Nv = N0 −Nx −Ny ≈ N0

is the number density of vacant sites in the lattice, to

kT ln (N0!/(N
′
v!Nx!Ny!Nz!)) ,

where

N ′
v = N0 −Nx −Ny −Nz ≈ N0,

and hence the additional entropy term in Eq. (A.1) will

be

kTNz ln (Nz/N0!) ,
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instead of

kTNz ln (Nz/e) ≡ kTNxy ln (Nxy/e) ,

while the interaction term

Nxyαxy ≡ Nzαz

does not appear in Eq. (A.1) (since the lattice gas Z is

ideal).

Since Φ in Eq. (A.2) must be a homogeneous func-

tion of the first order in Nx, Ny and Nxy [46], the

term exp [αxy (P, T,Nx, Ny)/kT ] in the argument of

the logarithm should be sought in the most general

form fxy(P, T )/(Nx + βNy). Given that after redefin-

ing x ↔ y, the free energy should not change, we can

conclude that β = 1. Accordingly,

Φ = Nxµx +Nyµy +

+ kTNxy ln

[
Nxy

e (Nx +Ny)
fxy(P, T )

]
, (A.3)

or, introducing a new function

ψxy(P, T ) = kT ln fxy(P, T ),

Φ = Nxµx +Nyµy +Nxy ψxy(P, T ) +

+ kTNxy ln

[
Nxy

e (Nx +Ny)

]
. (A.4)

The comparison of Eq. (A.4) with Eq. (A.1) shows

that

Nxyαxy (P, T,Nx, Ny) =

= Nxyψxy(P, T )− kTNxy ln (Nx +Ny) . (A.5)

Therefore, since the first term in Eq. (A.5),

Nxyψxy(P, T ), does not depend on the number of

monomers, the value ψxy(P, T ) is the standard free

energy of a cluster, while the second term of Eq. (A.5),

kTNxy ln (Nx +Ny), is the excess entropy of the

mixture.

This leads to the following expressions for the chem-

ical potentials of the ‘solvents’

µ′
x =

∂Φ

∂Nx
= µx − kT cxy ≈ µx, (A.6)

µ′
y =

∂Φ

∂Ny
= µy − kT cxy ≈ µy, (A.7)

where

cxy ≈ Nxy/(Nx +Ny) ≪ 1,

and of the ‘solute’

µxy =
∂Φ

∂Nxy
= kT ln cxy + ψxy. (A.8)

Therefore, from the equilibrium condition of the

chemical reaction xX + yY = XxYy,

xµx + yµy = µxy, (A.9)

the mass action law can be derived as

cxy ≈ Nxy

(Nx +Ny)
= Kxy(T ), (A.10)

with the equilibrium constant

Kxy(T ) = exp

(
−∆G0(x, y)

kT

)
, (A.11)

where

∆G0(x, y) = ψxy − xµx − yµy

is the Gibbs free energy of formation of a cluster.

If concentrations of clusters of other sizes are also

small, their contributions to the total free energy of

the system are linear; therefore, the equilibrium size

distribution function has the form

f0(x, y) = (Nx +Ny) exp

(
−∆G0(x, y)

kT

)
, (A.12)

which is derived, as mentioned above, in the ther-

modynamic approach for ‘macroscopic’ clusters with

x, y ≫ 1. For this reason, the assertion in Ref. [40]

that this expression for a cluster size of 1 does not re-

turn the number of monomers is irrelevant.

It is straightforward to see that, considering (follow-

ing Lothe and Pound [36]) clusters as an ideal lattice

gas Z with the chemical potential

µz = ψz(P, T ) + kTNz ln (Nz/N0)

(as discussed above), the solution to Eq. (A.9) will have

the form

cz = Nz/N0 = exp (−∆G0(x, y)/kT ) ,

where

∆G0(x, y) = ψz − xµx − yµy,

and thus the pre-exponential factor in Eq. (A.12) will

be equal to the number density of lattice sites N0, de-

rived (erroneously) in [36].
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APPENDIX B. CALCULATION OF THE
NUCLEATION RATE PARAMETERS

The elements

Dij = (1/2)∂2∆G0 (n
∗
a, n

∗
b)/∂ni∂nj

of the matrix D calculated in the first approximation

in the small parameter α ≪ 1 using Eq. (14) take the

form

D11 ≈ (kT )4

64πσ3v2
(lnSa + α)

3
(2α− lnSa) , (B.1)

D22 ≈ 3(kT )4

64πσ3v2
(lnSa + α)

3

α
, (B.2)

D12 ≈ − (kT )4

64πσ3v2
(lnSa + α)

3
(3 + lnSa) , (B.3)

leading to

detD = D11D22 −D2
12 ≈

≈ −
[

(kT )4

64πσ3v2
(lnSa + α)3

]2
3

(
1 +

lnSa

α

)
, (B.4)

which is negative above the critical supersaturation,

lnSa > −α, and thus

(− detD)1/2 ≈ (kT )4

64πσ3v2
(lnSa + α)3

[
3

(
1 +

lnSa

α

)]1/2
.

(B.5)

On the other hand, D11 changes its sign at

lnSa = 2α, and thus for lnSa > 2α becomes negative,

D11 < 0. In this case,

da = −D11

D12
≈ (2α− lnSa)

(3 + lnSa)
< 0 |da| < 1, (B.6)

and

db = −D22

D12
≈ 3

α (3 + lnSa)
≫ 1, (B.7)

which is valid for the typical composition of V microal-

loyed steels with lnSa ≈ 2.3 and α ≈ 0.04 (see Sec-

tion 2).

Taking into account Eq. (31) (i. e., r ≈ 1), this leads

to

s =
1

2
(da − rdb) ≈ −1

2
db ≈

≈ − 3

2α (3 + lnSa)
< 0, (B.8)

and

s2

r
≈ s2 ≫ 1. (B.9)

Strain effects that reduce the effective supersaturation

but maintain the same value of α (as explained in Sec-

tion 2) only exacerbate this inequality.

Under this condition, Eq. (28) can be simplified to

the form

tan θ = −|s|+
(
r + s2

) 1

2 ≈ 1

2|s| ≪ 1, (B.10)

and hence

cos2 θ =
1

1 + tan2 θ
≈ 4s2

4s2 + 1
≈ 1. (B.11)

A similar result can be obtained for typical Ti microal-

loyed steels with α ≈ 2 · 10−5and lnSa ≈ 14.4 (see

Section 2), which gives |s| ≈ 4.3 · 103 ≫ 1.

Since the effective supersaturation in deformed

steels is reduced due to strain effects (with the un-

changed value of α), D11 can become positive at

−α < lnSa < 2α. In this case,

da = −D11

D12
≈ (2α− lnSa)

(3 + lnSa)
≈

≈ 1

3
(2α− lnSa) < α≪ 1, (B.12)

db = −D22

D12
≈ 3

(3 + lnSa)α
≈ α−1 ≫ 1, (B.13)

and thus

s =
1

2
(da − rdb) ≈ −1

2
db ≈ − 1

2α
< 0, (B.14)

s2

r
≈ 1

4α2
≫ 1, (B.15)

leading to Eqs (B.11) and (B.12) also in this case.

Substituting these values into Eq. (25) leads to

D′
11 ≈ (kT )4

64πσ3v2
(lnSa + α)

3

[
(2α− lnSa)−

− α

3
[(3 + lnSa)]

2

]
, (B.16)

which is negative in both cases, −α < lnSa < 2α

and lnSa > 2α, and thus provides a maximum of the

free energy at the critical point in the direction of the

n′
a-axis (as assumed in the Reiss theory).

APPENDIX C. ESTIMATION OF THE
DISSOCIATION CONSTANTS

For a one-component solid solution (with concen-

tration c), the growth kinetics of a cluster containing n

monomers is described as

ṅ = βn(c)− αn,
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where βn = 4πDcRnΩ
−1 is the arrival rate of

monomers (with diffusivity D) into the cluster of ra-

dius Rn = (3vn/4π)1/3, calculated in Eq. (30), and αn

is the emission rate of monomers from the cluster, cal-

culated from the detailed balance at concentration c
(0)
n

in equilibrium with the cluster (i. e., when ṅ = 0),

βn

(
c(0)n

)
− αn = 0. (C.1)

Representing the Gibbs free energy of the cluster

formation in the form

∆G0(n) = −nkT lnS + 4πR2
nσ,

where S = c/ce is supersaturation of the solid solution,

σ is surface tension of the cluster, and calculating c
(0)
n

using the Gibbs-Kelvin equilibrium condition,

d∆G0(n)/dn = 0,

one obtains

kT ln

(
c
(0)
n

ce

)
= σ

d
(
4πR2

n

)

dn
, (C.2)

which, by using Eq. (C.1), leads to the relation

αn

βn
=
βn

(
c
(0)
n

)

βn(c)
=
c
(0)
n

c
=

= S−1 c
(0)
n

ce
= S−1 exp

[
σ

kT

d
(
4πR2

n

)

dn

]
=

= exp

(
1

kT

d∆G0(n)

dn

)
. (C.3)

In cluster dynamics (see, e. g., [47, 48]), the master

equations describe the change with time of the number

density of precipitates containing n monomers, where

the relation between the arrival rate βn and emission

rate αn are calculated using Eq. (C.3) represented in

the discrete form

αn = βn−1S
−1 ×

× exp

{
2σ
(
36πv2

)1/3

3kT

[
n2/3 − (n− 1)2/3

]}
. (C.4)

Although the Gibbs free energy ∆G0(n), as well as

surface tension σ, are the thermodynamic functions,

defined only for n ≫ 1, in cluster dynamics Eq. (C.3)

is extrapolated to small clusters, including n = 2, for

which the thermodynamic Gibbs-Kelvin equation is not

applicable. Nevertheless, such an approach leads to

reasonable predictions of the nucleation kinetics, and

thus will be used in the present work for evaluation of

the dissociation constants.

In this approach, the equilibrium concentration

of nitride (or carbide) molecules in the matrix can

be estimated by extrapolating the Gibbs free energy

of cluster formation ∆G
(a)
0 (x, y) ≡ ∆G

(MN)
0 (x, y) (or

∆G
(b)
0 (x, y) ≡ ∆G

(MC)
0 (x, y)) to the corresponding

dimers MN (or MC) in the system of monomers X ≡ M

and Y ≡ N (or C) (in notations of the Appendix A),

1

kT
∆G

(a)
0 (1, 1) ≈ − lnSa +

4π
(
3v
4π

) 2

3 σa

kT
, (C.5)

1

kT
∆G

(b)
0 (1, 1) ≈ − lnSb +

4π
(
3v
4π

) 2

3 σb

kT
, (C.6)

which, after substituting into Eq. (A.12), also extrap-

olated to dimers, gives

cMN ≈ f
(a)
0 (1, 1) =

= (cM + cN) exp

(
−∆G

(a)
0 (1, 1)

kT

)
, (C.7)

cMC ≈ f
(b)
0 (1, 1) =

= (cM + cC) exp

(
−∆G

(b)
0 (1, 1)

kT

)
, (C.8)

and thus,

K(d)
a =

cMcN
cMN

≈

≈ cMcN
(cM + cN)

S−1
a exp

[
(4π)1/3(3v)2/3σa

kT

]
, (C.9)

K
(d)
b =

cMcC
cMC

≈

≈ cMcC
(cM + cC)

S−1
b exp

[
(4π)1/3(3v)2/3σb

kT

]
. (C.10)

For the typical composition of V microalloyed steels

(considered in Section 2) with cM ≡ cV = 2.36 · 10−3

(corresponding to 0.215 wt%), cC = 8.87 · 10−3 (corre-

sponding to 0.19 wt%), cN = 6 · 10−4 (corresponding

to 0.015 wt%), and σa ≈ σb ≈ σ ≈ 0.5 J/m2 (used

in [7, 10]), the dissociation constants at 1200 K can be

evaluated as K
(d)
a ≈ 1, K

(d)
b ≈ 0.5 · 102. Being substi-

tuted in Eqs (38) and (39), these dissociation constants

provide very small concentrations of nitrides and car-

bides, cMV, cMC ≪ cM, cN, cC, as was assumed in cal-

culations.
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