T. 34

1958

ЭНЕРГЕТИЧЕСКИЙ СПЕКТР НЕИДЕАЛЬНОГО ФЕРМИ-ГАЗА

В. М. Галицкий

Найдены энергетический спектр и энергия основного состояния неидеального фермигаза с положительным потенциалом взаимодействия между частицами. Производится разложение по степеням отношения размера области действия потенциала к среднему расстоянию между частицами (газовое приближение). Получены первые два члена разложения.

Введение

Как известно, в ряде случаев возбужденные состояния системы взаимодействующих ферми-частиц могут рассматриваться как газ элементарных возбуждений — квазичастиц. Энергия квазичастицы определяется ее импульсом p, так что энергия возбуждения системы ε_s равна $\varepsilon(p_1) - \varepsilon(p_2)$ $(p_1 > p_0 > p_2, p_0 - граничный импульс Ферми)$. Такой спектр называют спектром «фермиевского типа». Описание системы методом квазичастиц является точным лишь в случае идеального газа. При наличии взаимодействия между частицами возбужденные состояния «фермиевского типа» не представляют собой точных стационарных состояний системы, что приводит к затуханию квазичастиц.

Как было показано в [1], для определения энергетического спектра системы удобно использовать методы квантовой теории поля. При этом энергия $\varepsilon(p)$ и затухание $\gamma(p)$ квазичастиц могут быть найдены как полюса аналитического продолжения одночастичной функции Грина G(p). В настоящей работе методы квантовой теории поля применяютзадаче неидеального ферми-газа, в котором взаимодействие СЯ K между частицами является короткодействующим na³ «1 (n — плотность частиц в системе, и — радиус действия потенциала), но не обязательно слабым. Предполагается, что центрально-симметричный потенциал взаимодействия V (r) положителен и запаздывание взаимодействия частиц отсутствует. Разложение ведется по степеням параметра pofo, где fo- действительная часть амплитуды рассеяния для малых импульсов. В квадратичном, по этому параметру, приближении найдены энергетический спектр системы и энергия основного состояния. Приближения более высокие, чем третье, не могут быть выражены через характеристики двухчастичной задачи, что затрудняет их получение в общем виде¹. Это обстоятельство применительно к вычислению энергии основного состояния было впервые отмечено в работе [2].

1. Одночастичная функция Грина. Графический метод

Одночастичная функция Грина системы определяется, как обычно, равенством

$$iG(x - x') = \langle T \{ \psi(x) \psi^{\dagger}(x') S \} \rangle / S_{nn}, \tag{1}$$

где операторы ψ и ψ^+ берутся в представлении взаимодействия, а усреднение производится по основному состоянию невзаимодействующих частиц. *S*-матрица рассеяния системы, равная в нашем случае

$$S \equiv T \left\{ \exp\left(-i\int H'dt\right) \right\} =$$

= $T \left\{ \exp\left[-\frac{i}{2}\int V(\mathbf{r}_1 - \mathbf{r}_2)\psi^+(\mathbf{r}_1 t)\psi^+(\mathbf{r}_2 t)\psi(\mathbf{r}_2 t)\psi(\mathbf{r}_1 t)dv_1 dv_2 dt \right] \right\}$ (2)

¹ Этим замечанием автор обязан Е. М. Лифшицу.

(мы используем единицы, в которых $\hbar = m = 1$). Это определение удобно несколько изменить, приписав операторам, зависящим от переменной \mathbf{r}_2 , время t_2 и вводя дополнительное интегрирование по времени

$$S = T \left\{ \exp\left[-\frac{i}{2} \int dx_1 dx_2 U \left(x_1 - x_2\right) \psi^+(x_1) \psi^+(x_2) \psi(x_2) \psi(x_1)\right] \right\}, \quad (2')$$

где

$$U(x_1 - x_2) = V(\mathbf{r}_1 - \mathbf{r}_2) \,\delta(t_1 - t_2). \tag{3}$$

В (2') интегрирование по переменным x_1 и x_2 ведется по всему бесконечному четырехмерному пространству.

При разложении S-матрицы, входящей в (1), по степеням взаимодействия U возникают средние значения T-произведений ф-операторов. Согласно тео реме Вика эти T-произведения могут быть представлены в виде суммы нормальных произведений и различных связок операторов. Для применения методов квантовой теории поля необходимо обращение в нуль средних значений нормальных произведений. Это условие будет выполнено, если мы представим ф в виде

$$\psi(\mathbf{r}) = u(\mathbf{r}) + v^{+}(\mathbf{r}); \quad u(\mathbf{r}) = V^{-il_{2}} \sum_{p > p_{a}} a_{p} e^{ip\mathbf{r}},$$
$$v^{+}(\mathbf{r}) = V^{-il_{2}} \sum_{p < p_{a}} a_{p} e^{ip\mathbf{r}} \qquad (4)$$

и определим нормальное произведение как произведение, в котором все операторы u и v стоят справа, а операторы u^+ и v^+ —слева. При таком определении операторы u и v имеют смысл операторов уничтожения, а операторы u^+ и v^+ —операторов рождения частицы и дырки, соответственно. Средние от N-произведений обращаются в нуль и связка двух операторов равна функции Грина невзаимодействующих частиц:

$$\dot{\psi}(x)\,\dot{\psi}^{+}(x') = iG_{0}(x - x') = \langle T \,\{\psi(x)\,\psi^{+}(x')\}\rangle. \tag{5}$$

В импульсном представлении функция Грина невзаимодействующих частиц имеет вид

$$G_{0}^{-1}(p) \equiv G_{0}^{-1}(\mathbf{p},\varepsilon) = \varepsilon - \varepsilon_{p}^{0} + i\delta\theta(\mathbf{p}), \qquad (6)$$

где $\varepsilon_n^0 = 1/_2 p^2$ и

$$\theta(\mathbf{p}) = 1 - 2n_{\mathbf{p}} = \begin{cases} 1 & |\mathbf{p}| > p_{\mathbf{0}} \\ -1 & |\mathbf{p}| < p_{\mathbf{0}} \end{cases},$$

 $n_{\rm p}$ — числа заполнения невзаимодействующих частиц в основном состоянии. Определенному разбиению *T*-произведения на совокупность связок может быть поставлен в соответствие график. Графики строятся из сплошных

Рис. 1

у р , р д ш – ответствует функция распространения частицы $iG_0(x - x')$ или, в импульсном представлении $iG_0(p)$, каждому пунктиру — взаимодействие — $iU(x_1 - x_2)$ или в импульсном представлении —iU(q), и в каждой вершинной точке справедлив закон сохранения четырехмерного импульса $p_1 - p_2 + q = 0$. Та⁻ ка⁻ взаи – д⁻йс⁻ви – ив-д⁻⁻⁻ к ви⁻у нормального произведения, при вычислении могут встретить⁺

ся связки операторов, входящих в одно и то же H', т. е. одновременных операторов. Для определения таких связок заметим, что во взаимодействии H' операторы ψ^+ стоят слева от операторов ψ , поэтому $G_0(p, \tau)$ при $\tau = 0$ необходимо понимать как $G_0(p_1 - 0) = in_p$.

Весьма важным для дальнейшего обстоятельством является отсутствие запаздывания во взаимодействии (формула (3)). Отсутствие запаздывания

удобно отражать в графиках горизонтальностью пунктиров. Такое изображение позволяет судить по графикам о числе частиц и дырок, участвующих в процессе. Например, в процессе, соответствующем графику рис. 1, участвует одна частица и одна дырка, так как при любом расположении вершинвследствие (3) одна из линий 1 или 2 направлена вниз (дырка).

2. Оценки графиков. Газовое приближение

Введем компактную часть собственной энергии частицы $\Sigma(p)$

$$G^{-1}(p) = G_0^{-1}(p) - \Sigma(p) = \varepsilon - \varepsilon_p^0 - \Sigma(p) .$$
⁽⁷⁾

В первом приближении теории возмущений $\Sigma(p)$ определяется двумя графиками рис. 2. График 2, *а* отвечает необменному рассеянию на частице заполнения Φ_{-} рм (част ца фо..а) гра₊ик 2, 6—

обменному. В интересующем нас случае $p_0a \ll 1$ оба графика равны и меют порядок $nV \sim p_0^2 \cdot p_0 a \cdot V_0 a^2$, где V — компонента Фурье потенциала для малых импульсов, V_0 — велич на поте циал ___у ри об. с и д.й-ствия.

ия. Дальнейшее усложнение графиков мо-

а б Рис. 2

жет идти в трех направлениях. 1. Добавляются пунктиры, соединяющие одинаково направленные сплошные линии (рис. 3, графики а и б).

2. Наряду с пунктирами первого типа добавляются пунктиры, соединяющие линии разных направлений (рис. 3, график в).

3. Добавляются замкнутые петли, связанные пунктиром с основным графиком (не связанные замкнутые петли, как известно, сокращаются со знаменателем (1)).

Оценим величину этих графиков. При усложнениях первого типа каждый дополнительный пунктир добавляет в Σ множитель $G_0^2U(q)$ и одно интегрирование по четырехмерному импульсу q. В результате интегрирования по четвертой компоненте q(U(q) зависит только от q) получаем интеграл вида

$$\int \frac{d\mathbf{q}}{q^2} V(\mathbf{q}),\tag{8}$$

сходимость которого при больших q определяется функцией $V(\mathbf{q})$. Оценка этого интеграла дает величину Va^{-1} или V_0a^2 , т. е. параметр теории возмущений. Таким образом, совокупность графиков первого типа представляет собой ряд теории возмущений. При усложнениях второго типа дополнительная часть графика имеет вид, изображенный на рис. 1. Так как одна из линий отвечает распространению дырки, импульс которой не превышает границу Ферми p_0 , то интегрирование по q в (8) ведется в этом случае по ограниченной области размера p_0 . В результате получаем p_0V или $p_0a \cdot V_0a^2$, т. е. усложнения второго типа содержат наряду с параметром теории возмущений V_0a^2 также дополнительный параметр «газовости» p_0a . Различиемежду величиной графиков первого и второго типа допускает простое физи-

ческое истолкование. Действительно, усложнению первого типа отвечает дополнительное приближение теории возмущений по взаимодействию двух частиц, в то время как усложнениям второго типа — дополнительное приближение по взаимодействию частицы с дыркой. Но взаимодействие с дыркой есть по существу взаимодействие с частицей фона, поэтому в процессе, отвечающем графикам 3, а и 3, б, участвовала одна частица фона, а в процессе 3, в—две. Естественно, что каждое дополнительное взаимодействие с частицей фона вносит параметр «газовости» $p_0 a$. Этот результат относится также к графикам третьего типа (3, с). Графики 3, в и 3, г будут стброшены. Точная оценка этих графиков, не опирающаяся на теорию возмущений, проведена в разделе 5. Результат оценки показывает,что графики типа 3, в и 3, г необходимо учитывать лишь в третьем, по малому параметру $p_0 f$, приближении.

Графики вида 3, а и 3, б, определяющие собственную энергию частицы в первом и втором газовом приближении, могут быть представлены в виде

скелетных графиков, изображенных на рис. 4. Квадратом условно обозначена совокупность фейнмановских диаграмм, описывающих взаимодействие двух частиц в «лестничном» приближении (рис. 5). Эту величину мы будем обозначать

$$-i\Gamma(p_1p_2, p_3p_4)$$

и называть эффективным потелциалом взаимодействия. Графики 4, *а* и 4, *б* имеют ту же структуру, что и графики первого приближения теории возмущений (2, *a* и 2, *б*), с той, однако, разницей, что пунктир, отвечающий взаимодействию в борновском приближении, заменен в них эффективным потенциалом Г. Величина собственной энергии частиц, определяющаяся этими графиками, имеет вид.

$$\Sigma(p) = -i \int dp' G_0(p') \Gamma(pp', pp') + i \int dp' G_0(p') \Gamma(pp', p'p).$$
(9)

Здесь и в дальнейшем мы используем следующие обозначения:

$$dp = d\mathbf{p}d\mathbf{e} / 2\pi, \quad d\mathbf{p} = dp_x dp_y dp_z / (2\pi)^3;$$

$$\delta(p) = 2\pi\delta(\mathbf{p})\,\delta(\mathbf{e}), \quad \delta(\mathbf{p}) = (2\pi)^3\,\delta(p_x)\,\delta(p_y)\,\delta(p_z).$$

Формула (9) не учитывает наличие у частиц спина. Для учета этого обстоятельства заметим прежде всего, что функция Грина $G_0(p)$ содержит опущенный нами д-символ $\partial_{s,s'}$ (s и s' — проекции спина соответственно в точках x и x'), означающий, что при распространении частицы проекция ее спина не меняется. Этот результат сохраняется также в том случае, когда частица при своем распространении взаимодействовала с другими, так как потенциал не зависит от спиновой переменной. Таким образом, наличие -спина приводит к появлению в $\Gamma(p_1 p_2, p_3 p_4)$ множителя $\partial_{s_1s_2} \cdot \partial_{s_2s_4}$. В результате суммирования по спиновой переменной s' в (9) получаем в первом члене множитель 2s-1, во втором 1. Этот результат имеет простой физический смысл. Графику 4, б отвечает обменное рассеяние, в котором могут участвовать лишь те частицы фона, проекция спина которых совпадает с проекцией спина налетающей частицы. В отличие от этого, графику 4, а отвечает процесс необменного рассеяния, в котором участвуют все части зоны Ферми. Ограничиваясь случаем частиц со спином 1/2, получаем окончательно

$$\Sigma(p) = -2i \int dp' G_0(p') \Gamma(pp', pp') + i \int dp' G_0(p') \Gamma(pp', p'p).$$
(9')

3. Эффективный потенциал взаимодействия

Для определения эффективного потенциала взаимодействия введем функцию Q, связанную с Г следующим равенством

$$\Gamma(p_1p_2, p_3p_4) = \int dq U(q) Q(p_1 - q, p_2 + q, p_3p_4).$$
(10)

Функция Q отличается от двухчастичной функции Грина K в «лестничном» приближении отсутствием начальных внешних линий с импульсами p_3 и p_4 . Поэтому уравнение для Q может быть получено из соответствующего уравнения для функции K делением на произведение $iG_0(p_3)iG_0(p_4)$. В результате имеем для $Q' = \delta(p_1 + p_2 - p_3 - p_4)Q$:

$$Q'(p_1p_2, p_3p_4) = \delta(p_1 - p_3) \delta(p_2 - p_4) + iG_0(p_1) G_0(p_2) \int dq U(q) Q'(p_1 - q, p_2 + q, p_3p_4).$$
(11)

Переходя к относительным импульсам р и р' и импульсу центра тяжести g

 $p = (p_1 - p_2)/2, \quad p' = (p_3 - p_4)/2, \quad g = p_1 + p_2 = p_3 + p_4,$ (12) получаем уравнения

$$Q(p, p', g) \equiv Q\left(\frac{g}{2} + p, \frac{g}{2} - p; \frac{g}{2} + p', \frac{g}{2} - p'\right) = \delta(p - p') + iG_0\left(\frac{g}{2} + p\right)G_0\left(\frac{g}{2} - p\right)\int dqU(q)Q(p - q, p', g).$$
(13)

В равенстве (10) потенциал U(q) не зависит от четвертой компоненты q, поэтому для определения эффективного потенциала достаточно знать функцию Q, проинтегрированную по ε — четвертой компоненте относительного импульса p. Обозначая эту функцию $\chi(\mathbf{p}, \mathbf{p}', g)$ и интегрируя (13) по ε , находим

$$\chi(\mathbf{p}, \mathbf{p}', g) - \frac{N(\mathbf{p})}{E - p^2 + i\delta N(\mathbf{p})} \int d\mathbf{q} V(\mathbf{q}) \,\chi(\mathbf{p} - \mathbf{q}, \mathbf{p}', g) = \delta(\mathbf{p} - \mathbf{p}'). \quad (14)$$

Здесь $E = g_0 - \frac{1}{4}g^2$ (g_0 — четвертая компонента g), а множитель $N(\mathbf{p})$ учитывает запреты, вытекающие согласно принципу Паули из наличия фона

$$N(\mathbf{p}) = 1 - n_{g/2+p} - n_{g/2-p}.$$
 (15)

Для дальнейших вычислений удобно рассматривать эффективный потенциал как функцию относительных и суммарного импульсов, введенных равенствами (12). Переходя в формуле (10) к этим переменным, убеждаемся, что Г зависит только от пространственных компонент относительных импульсов *p* и *p*'. Обозначив

$$\Gamma(\mathbf{p},\mathbf{p'},g) \equiv \Gamma\left(\frac{g}{2}+p,\frac{g}{2}-p;\frac{g}{2}+p',\frac{g}{2}-p'\right),$$

получаем из (10) следующую связь эффективного потенциала с функцией х:

$$[\Gamma(\mathbf{p},\mathbf{p}',g)] = \int d\mathbf{q} V(\mathbf{q}) \chi(\mathbf{p}-\mathbf{q},\mathbf{p}',g).$$
(16)

Уравнение (14) не может быть решено в общем виде; наша задача состоит в том, чтобы выразить решение этого уравнения через амплитуды рассеяния частиц. Рассмотрим сначала задачу рассеяния в пустоте. В. М. Галицкий

В этом случае N (p) = 1 и (14) принимает вид:

$$\chi_{0}(\mathbf{p},\mathbf{p}',g) - \frac{1}{E - \mathbf{p}^{2} + i\delta} \int d\mathbf{q} V(\mathbf{q}) \chi_{0}(\mathbf{p},\mathbf{p}',g) = \delta(\mathbf{p} - \mathbf{p}').$$
(14')

Уравнение (14'), умноженное на $E - p^2 + i\delta$, совпадает с неоднородным уравнением Шредингера для относительного движения двух частиц. Поэтому его решение легко выразить через $\psi_k(p)$ — волновые функции относительного движения при рассеянии частиц (k — относительный импульс на бесконечности):

$$\chi_0(\mathbf{p},\mathbf{p}',g) = (E-p'^2+i\delta) \int d\mathbf{k} \frac{\psi_{\mathbf{k}}(\mathbf{p})\psi_{\mathbf{k}}(\mathbf{p}')}{E-k^2+i\delta} \,. \tag{17}$$

Введем амплитуду рассеяния частиц f (p, k) равенством

$$f(\mathbf{p},\mathbf{k}) = \int d\mathbf{q} V(\mathbf{q}) \psi_{\mathbf{k}}(\mathbf{p}-\mathbf{q}). \tag{18}$$

Эта амплитуда отличается от обычной множителем — 4π : обычная амплитуда равна — $f(\mathbf{p}, \mathbf{k})/4\pi$. Волновые функции $\psi_{\mathbf{k}}(\mathbf{p})$ связаны с амплитудой соотношением

$$\psi_{k}(\mathbf{p}) = \delta(\mathbf{p} - \mathbf{k}) + \frac{f(\mathbf{p}, \mathbf{k})}{k^{2} - p^{2} + i\delta}.$$
(19)

Заменяя согласно этому соотношению $\psi_k(p')$ в (17), получаем

$$\chi_{0}(\mathbf{p},\mathbf{p}',g) = \psi_{\mathbf{p}'}(\mathbf{p}) + \int d\mathbf{k}\psi_{\mathbf{k}}(\mathbf{p}) f^{*}(\mathbf{p}',\mathbf{k}) \left\{ \frac{1}{E-k^{2}+i\delta} + \frac{1}{k^{2}-p'^{2}-i\delta} \right\}, \quad (17')$$

или для $\Gamma_0(\mathbf{p}, \mathbf{p}', g)$ — эффективного потенциала взаимодействия частиц в пустоте², определяемого равенством, аналогичным (16):

$$\Gamma_{0}(\mathbf{p},\mathbf{p}',g) = f(\mathbf{p},\mathbf{p}') + \int d\mathbf{k}f(\mathbf{p},\mathbf{k}) f^{*}(\mathbf{p}',\mathbf{k}) \left\{ \frac{1}{E-k^{2}+i\delta} + \frac{1}{k^{2}-p'^{2}-i\delta} \right\}.$$
(20)

Используя формулу (II) Приложения, Γ_0 можно представить также в несколько ином эквивалентном виде:

$$\Gamma_{0}(\mathbf{p},\mathbf{p}',g) = f^{*}(\mathbf{p}',\mathbf{p}) + \int d\mathbf{k}f(\mathbf{p},\mathbf{k}) f^{*}(\mathbf{p}',\mathbf{k}) \left\{ \frac{1}{E - k^{2} + i\delta} + \frac{1}{k^{2} - p^{2} + i\delta} \right\}. (20')$$

Таким образом эффективный потенциал взаимодействия частиц в пустоте в первом приближении равен амплитуде рассеяния $f(\mathbf{p}, \mathbf{p}')$ или $f^*(\mathbf{p}', \mathbf{p})$. Переходя к решению уравнения (14), представим его в виде

$$\chi(\mathbf{p}, \mathbf{p}', g) - \frac{1}{E - p^2 + i\delta} \int d\mathbf{q} V(\mathbf{q}) \chi(\mathbf{p} - \mathbf{q}, \mathbf{p}', \mathbf{q}) =$$

= $\delta'_{\mathbf{q}}(\mathbf{p} - \mathbf{p}') + \left\{ \frac{N(\mathbf{p})}{E - p^2 + i\delta N(\mathbf{p})} - \frac{1}{E - p^2 + i\delta} \right\} \Gamma(\mathbf{p}, \mathbf{p}', g),$ (21)

χ₀ есть функция Грина левой части этого уравнения. Поэтому (21) допускает следующее формальное решение:

$$\chi(p, p', g) = \chi_0(p, p', g) +$$

$$+\int d\mathbf{k}\chi_0(\mathbf{p},\mathbf{k},g)\left\{\frac{N(\mathbf{k})}{E-k^2+i\delta N(\mathbf{k})}-\frac{1}{E-k^2+i\delta}\right\}\Gamma(\mathbf{k},\mathbf{p}',g)\ .$$

Применяя соотношение (16), приходим к интегральному уравнению для эффективного потенциала Г

$$\Gamma(\mathbf{p}, \mathbf{p}', g) = \Gamma_0(\mathbf{p}, \mathbf{p}', g) + + \int d\mathbf{k} \Gamma_0(\mathbf{p}, \mathbf{k}, g) \left\{ \frac{N(\mathbf{k})}{E - k^2 + i\delta N(\mathbf{k})} - \frac{1}{E - k^2 + i\delta} \right\} \Gamma(\mathbf{k}, \mathbf{p}', g).$$
(22)

⁸ Вопросы, связанные с Г₀, решались совместно с С. Т. Беляевым, работавшим одновременно над аналогичными проблемами для бозе-газа.

Уравнение (22) может быть решено методом итераций, так как интегральный член его мал. Действительно, разность, стоящая в фигурных скобках, отлична от нуля только при $N \neq 1$, т. е. в области изменения k порядка p_0 . В первом приближении Γ_0 можно заменить амплитудой рассеяния f. Тогда для значений $E \sim p_0^2$ получим следующую порядковую оценку интегрального члена в (22):

$$p_0^3 f \cdot p_0^{-2} \Gamma = p_0 f \cdot \Gamma \ll \Gamma.$$

Таким образом, учитывая члены второго порядка малости, мы можем в интеграле (22) заменить $\Gamma_0(\mathbf{p}, \mathbf{k}, g)$ на $\tilde{f}(\mathbf{p}, \mathbf{k})$ и $\Gamma(\mathbf{k}, \mathbf{p}', g)$ на $\Gamma_0(\mathbf{k}, \mathbf{p}', g) \approx \mathfrak{f}^*(\mathbf{p}', \mathbf{k})$. В результате получаем

$$\Gamma(\mathbf{p}, \mathbf{p}', g) = \Gamma_0(\mathbf{p}, \mathbf{p}', g) + \int d\mathbf{k} f(\mathbf{p}, \mathbf{k}) f^*(\mathbf{p}', \mathbf{k}) \left\{ \frac{N(\mathbf{k})}{E - k^2 + i\delta N(\mathbf{k})} - \frac{1}{E - k^2 + i\delta} \right\} = f(\mathbf{p}, \mathbf{p}') + \int d\mathbf{k} f(\mathbf{p}, \mathbf{k}) f^*(\mathbf{p}', \mathbf{k}) \left\{ \frac{N(\mathbf{k})}{E - k^2 + i\delta N(\mathbf{k})} + \frac{1}{k^2 - p'^2 + i\delta} \right\}.$$
 (23)

Как видно из (23), эффективный потенциал взаимодействия Γ , подобно Γ_0 , в первом приближении равен амплитуде рассеяния $f(\mathbf{p}, \mathbf{p}')$. Во втором слагаемом интеграл сходится при значениях k^2 порядка большей из величин E или p'^2 . Для интересующей нас собственной энергии частицы $\Sigma(\mathbf{p}, \varepsilon)$, при значениях ε вблизи $1/2p^2$, обе величины E и p'^2 имеют порядок p_0^2 . Поэтому второй член (23) в $p_0 f$ раз меньше первого.

Для равных по модулю импульсов р и р' эффективный потенциал Г можно записать в несколько ином виде. Используя равенство

$$\frac{1}{k^2 - p'^2 + i\delta} = P \frac{1}{k^2 - p^2} - i\pi\delta (k^2 - p'^2)$$

и формулу (IV) Приложения, получаем

5

$$\Gamma(\mathbf{p}, \mathbf{p}', g) = \operatorname{Re} f(\mathbf{p}, \mathbf{p}') + \int d\mathbf{k} f(\mathbf{p}, \mathbf{k}) f(\mathbf{p}', \mathbf{k}) \operatorname{P} \frac{1}{k^2 - p'^2} + \int d\mathbf{k} f(\mathbf{p}, \mathbf{k}) f(\mathbf{p}', \mathbf{k}) \frac{N(\mathbf{k})}{E - k^2 + i\delta N(\mathbf{k})}, \qquad (23')$$

где символ Р означает, что интеграл берется в смысле главного значения.

4. Энергетический спектр системы. Энергия основного состояния

Компактная часть собственной энергии частицы может быть записана в виде

$$\Sigma(p) = -2i \int \frac{d\varepsilon'}{2\pi} d\mathbf{p}' G_0(p') \Gamma(\mathbf{q}, \mathbf{q}, g) + i \int \frac{d\varepsilon'}{2\pi} d\mathbf{p}' G_0(p') \Gamma(\mathbf{q}, -\mathbf{q}, g),$$

где q = (p - p')/2, g = p + p'. Первые два члена Г в (23') не зависят от четвертых компонент импульса, поэтому их интегрирование по ε' сводится к вычислению

$$\int \frac{d\varepsilon'}{2\pi} G_0(\mathbf{p}',\varepsilon').$$

Этот интеграл есть $G_0(\mathbf{p}', \tau)$ при $\tau = 0$, т. е. согласно замечанию раздела 1, $G_0(\mathbf{p}', -0) = in_{\mathbf{p}'}$. Интеграл по s' от последнего члена (23') вычисляется элементарно. В результате получаем

$$\Sigma(p) = \Sigma_1(p) + \Sigma_2(p), \qquad (24)$$

$$E_{1}(p) = 2 \int dp' n_{p'} \operatorname{Re} f(q, q) - \int dp' n_{p'} \operatorname{Re} f(q, -q), \qquad (25)$$

$$\Sigma_{2}(p) = \int d\mathbf{p}' d\mathbf{k} \{ 2 | f(\mathbf{q}, \mathbf{k}) |^{2} - f(\mathbf{q}, \mathbf{k}) f^{*}(-\mathbf{q}, \mathbf{k}) \} \times \\ \times \{ n_{\mathbf{p}'} P \frac{1}{k^{2} - q^{2}} - N(\mathbf{k}) \frac{N(\mathbf{k}) - \theta(\mathbf{p}')}{2} \frac{1}{k^{2} - q^{2} - \varepsilon + \varepsilon_{p}^{0} + i\delta [\theta(\mathbf{p}') - N(\mathbf{k})]} \}.$$
(26)

В. М. Галицкий

Для длин волн, значительно превышающих размер *а* области действия потенциала, действительная часть амплитуды не зависит от импульсов. Поэтому, ограничиваясь рассмотрением возбуждений с импульсами *p*, удовлетворяющими условию

$$pf \ll 1$$
, (27)

можно считать действительную часть амплитуды постоянной. Полагая

$$\operatorname{Re} f = 4\pi f_0, \tag{28}$$

где f_0 — действительная часть обычной амплитуды рассеяния с обратным знаком, и вынося f_0 за знак интеграла в (25), получаем собственную энергию частицы в первом приближении

$$\Sigma_1 = 2\pi n f_0. \tag{29}$$

Таким образом, в первом по газовому параметру малости приближении, Σ есть действительная постоянная величина. Функция Грина первого приближения имеет вид:

$$G_{1}(\mathbf{p},\varepsilon) = 1/[\varepsilon - \varepsilon_{p}^{0} - 2\pi n f_{0} + i\delta\theta(\mathbf{p})].$$
(30)

Вводя вместо ε новую переменную ε',

$$\varepsilon' = \varepsilon - 2\pi n f_0, \tag{31}$$

убеждаемся, что $G_1(\mathbf{p}, \varepsilon')$ совпадает с функцией Грина невзаимодействующих частиц. Мы можем поэтому уточнить наши вычисления, предполагая, что вместо $G_0(\mathbf{p}, \varepsilon)$ использовали везде функцию Грина первого приближения $G_1(\mathbf{p}, \varepsilon)$. В результате этого уточнения во всех формулах ε будет заменено на ε' , так что функция Грина второго приближения примет вид

$$G_{2}^{-1}(\mathbf{p},\varepsilon) = \varepsilon - \varepsilon_{p}^{0} - 2\pi n f_{0} - \Sigma_{2}(\mathbf{p},\varepsilon') = \varepsilon' - \varepsilon_{p}^{0} - \Sigma_{2}(\mathbf{p},\varepsilon'), \qquad (32)$$

где $\Sigma_2(\mathbf{p}, \varepsilon')$ получается из (26) заменой ε на ε' .

Перейдем к вычислению собственной энергии второго приближения Σ_2 . В интеграле по переменной k в формуле (26) существенна область значений k порядка q. Для возбуждений с импульсами, удовлетворяющими условию (27), оба аргумента амплитуд малы. Поэтому мнимой частью амплитуд можно пренебречь, а действительную часть считать постоянной и вынести за знак интеграла. Используя обозначение (28), получаем:

$$\operatorname{Re}\Sigma_{2} = 16\pi^{2}f_{0}^{2}\int d\mathbf{p}'d\mathbf{k} \left\{ n_{\mathbf{p}'} P \frac{1}{k^{2} - q^{2}} - N\left(\mathbf{k}\right) \frac{N\left(\mathbf{k}\right) - \theta\left(\mathbf{p}'\right)}{2} P \frac{1}{k^{2} - q^{2} - \varepsilon' + \varepsilon_{p}^{0}} \right\},$$
(26')
$$\operatorname{Im}\Sigma_{2} = -4\pi^{3}f_{0}^{2}\int d\mathbf{p}'d\mathbf{k}N\left(\mathbf{k}\right) [N\left(\mathbf{k}\right) - \theta\left(\mathbf{p}'\right)]^{2}\delta\left(k^{2} - q^{2} - \varepsilon' + \varepsilon_{p}^{0}\right).$$
(26')

Энергетический спектр системы определяется полюсами аналитического продолжения функции Грина (1) или в нашем приближении равенством

$$\varepsilon_{\rho} - \varepsilon_{\rho}^{0} - 2\pi n f_{0} - \Sigma_{2} \left(\mathbf{p}, \varepsilon_{\rho}^{0} \right) = 0.$$
(33)

После несложных вычислений получаем для энергии є_р и затухания у квазичастиц следующие выражения:

$$\frac{\varepsilon_p}{p_0^2} = \frac{1}{2} x^2 + \frac{2}{3\pi} p_0 f_0 + \frac{2}{15\pi^3} p_0^2 f_0^2 \frac{1}{x} \left\{ 11x + 2x^5 \ln \frac{x^2}{|x^2 - 1|} - 10(x^2 - 1) \ln \left| \frac{x + 1}{x - 1} \right| - (2 - x^2)^{s_h} \ln \left| \frac{1 + x\sqrt{2 - x^2}}{1 - x\sqrt{2 - x^2}} \right| \right\}, \ x \leqslant \sqrt{2}, \qquad 34)$$

158

$$\frac{\varepsilon_{p}}{p_{0}^{2}} = \frac{1}{2}x^{2} + \frac{2}{3\pi}p_{0}f + \frac{2}{15\pi^{2}}p_{0}^{2}f_{0}^{2}\frac{1}{x}\left\{11x + 2x^{5}\ln\frac{x^{2}}{x^{2}-1} - 10\left(x^{2}-1\right)\ln\left|\frac{x+1}{x-1}\right| - 2\left(x^{2}-2\right)^{s_{l_{0}}}\operatorname{arcctg} x\sqrt{x^{2}-2}\right\}, \ x \geqslant \sqrt{2},$$

$$\frac{\gamma}{p_{0}^{2}} = -\frac{1}{4\pi}p_{0}^{2}f_{0}^{2}\left(1-x^{2}\right)^{2}, \ x \leqslant 1; \ \frac{\gamma}{p_{0}^{2}} = \frac{1}{15\pi}p_{0}^{2}f_{0}^{2}\frac{1}{x}\left\{5x^{2}-7+2(2-x^{2})^{s_{l_{0}}}\right\}, \ 1 \leqslant x \leqslant \sqrt{2},$$

$$\frac{\gamma}{p_{0}^{2}} = -\frac{1}{15\pi}p_{0}^{2}f_{0}^{2}\frac{5x^{2}-7}{x}, \ \sqrt{2} \leqslant x,$$
(35)

где $x = p/p_0$. Разложение (34) в ряд для импульсов, близких к границе Ферми p_0 , имеет вид:

$$\frac{\varepsilon_p}{p_0^2} = \frac{1}{2} x^2 + \frac{2}{3\pi} p_0 f_0 + \frac{2}{15\pi^2} p_0^2 f_0^2 (11 - 2\ln 2) - \frac{8}{15\pi^2} p_0^2 f_0^2 (7 \ln 2 - 1) (x - 1) + \dots$$
(34')

Из (34') может быть получена эффективная масса частиц на границе Ферми *m**:

$$\frac{m^*}{m} = 1 + \frac{8}{15\pi^2} (7\ln 2 - 1) p_0^2 f_0^2 \qquad . (36)$$

и химический потенциал системы, равный, как известно [1], энергии квазичастицы при $p = p_0$:

$$\mu = \frac{1}{2} p_0^2 \left\{ 1 + \frac{4}{3\pi} p_0 f_0 + \frac{4}{15\pi^2} (11 - 2 \ln 2) p_0^2 f_0^2 \right\}.$$
(37)

Эти выражения совпадают с полученными Абрикосовым и Халатниковым [³]. Используя формулу $\mu = (\partial E_0 / \partial N)_V$, находим энергию основного состояния системы [⁴]:

$$\frac{E_0}{N} = \frac{3}{10} p_0^2 \left\{ 1 + \frac{40}{9\pi} p_0 f_0 + \frac{4}{21\pi^2} (11 - 2\ln 2) p_0^2 f_0^2 \right\}.$$
 (38)

Затухание квазичастиц ү для импульсов р, близких қ р₀, имеет вид:

$$\gamma = -\frac{1}{\pi} p_0^2 f_0^2 (p_0 - p)^2, \ p < p_0,$$

$$\gamma = \frac{1}{\pi} p_0^2 f_0^2 (p - p_0)^2, \ p > p_0,$$
(35')

т. е. пропорционально квадрату отклонения от границы Ферми. Рассмотрим возбуждения с большими импульсами

$$p_0 \ll p \ll 1/f_0$$

Для таких импульсов квадратичная поправка к энергии квазичастиц е_{р.} мала. Мнимая часть принимает вид:

$$\gamma = \frac{1}{3\pi} p_0^3 f_0^2 p = \frac{1}{4} n p \sigma.$$

Используя связь мнимой части амплитуды рассеяния вперед с полным сечением о находим

 $\varepsilon_p - i\gamma \sim \varepsilon_p^0 - 2\pi n f$ (p/2, p/2),

где f — обычная амплитуда рассеяния.

(39)

В. М. Галицкий

Вычисление Σ_2 как функции переменных р и є приводит к весьма громоздким выражениям. Разложение действительной части для случая $|x-1| \ll 1$ и $|y| \ll 1$, где

$$y = (\varepsilon' - \varepsilon_p^0)/p_0^2,$$

имеет вид:

$$\operatorname{Re}\Sigma_{2}(\mathbf{p},\epsilon) = \frac{1}{\pi^{2}} p_{0}^{2} f_{0}^{2} \left\{ \frac{2}{15} \left(11 - 2\ln 2 \right) - \frac{8}{15} \left(7\ln 2 - 1 \right) \left(x - 1 \right) - 4\ln 2 \cdot y \right\}.$$
(40)

Из (40) может быть получена перенормировочная константа функции Грина Z, связанная, как известно [⁵], с величиной скачка в распределении частиц по импульсам:

$$Z = n(p_0 - 0) - n(p_0 + 0) = 1 - 2p_0^{2f_2} \frac{1}{n^2} 4\ln.$$
 (41)

Для мнимой части Σ_2 , как функции переменных *p* и є, возникает ряд областей, в которых Іті Σ имеет различный аналитический вид. Покажем, что эта функция обращается в нуль при значении є' = $1/2p_0^2$, независимо от величины импульса. Запишем (26") в виде

$$\operatorname{Im} \Sigma(\mathbf{p}, \varepsilon) = -4\pi^{3} f_{0}^{2} \int d\mathbf{p}' d\mathbf{p}_{1} d\mathbf{p}_{2} \{ n_{r'} (1 - n_{\mathbf{p}_{1}}) (1 - n_{\mathbf{p}_{2}}) - (1 - n_{\mathbf{p}'}) n_{\mathbf{p}_{1}} n_{\mathbf{p}_{2}} \} \times \\ \times \delta \Big(\frac{1}{2} p_{1}^{2} + \frac{1}{2} p_{2}^{2} - \frac{1}{2} p'^{2} - \varepsilon' \Big) \delta (\mathbf{p}_{1} + \mathbf{p}_{2} - \mathbf{p}' - \mathbf{p}).$$

Первый член в фигурных скобках определяет затухание квазичастиц, второй — затухание дырок. При $\varepsilon' = 1/2p_0^2$ каждый из этих членов обращается в нуль, так как первый требует $p'^2 < p_0^2, 1/2p_1^2 + 1/2p_2^2 > p_0^2$, а второй $p'^2 > p_0^2, 1/2p_1^2 + 1/2p_2^2 < p_0^2$ в нарушение равенства $p_1^2 + p_2^2 = p'^2 + p_0^2$. Согласно общей теории функции Грина системы многих частиц, место обращения в нуль мнимой части собственной энергии определяет химический потенциал системы μ [¹]. Равенство

$$\operatorname{Im}\Sigma\left(\mathbf{p},\,p_{0}^{2}/2\right)=0$$

показывает, что найденное нами выражение для Im Σ позволяет определить химический потенциал лишь в первом приближении. Этот результат можно уточнить, включив в ε' наряду с $2\pi n f_0$ также поправку к энергии частиц на границе Ферми второго приближения. Такой метод расчета использован Беляевым [⁶].

Выясним связь полученных нами результатов с общей теорией фермижидкостей, развитой в [⁷].

Вследствие монотонной зависимости энергии квазичастиц ε_p от импульса, квазичастицы в основном состоянии заполняют зону Ферми с граничным импульсом p_0 . Таким образом, числа заполнения квазичастиц совпадают с числами заполнения невзаимодействующих частиц n_p . Это равенство сохранится также и для состояний, близких к основному. Нетрудно видеть, что выражения (25) и (26) и (26') для добавки к энергии частиц справедливы при любом распределении невзаимодействующих частиц. Для этого достаточно определить операторы u и v^+ в (4) равенствами:

$$u = V^{-i_{l_{a}}} \sum_{\mathbf{p}} (1 - n_{p}) a_{p} e^{i_{p}\mathbf{r}}, \ v^{+} = V^{-i_{l_{a}}} \sum_{\mathbf{p}} n_{p} a_{p} e^{i_{p}\mathbf{r}}, \tag{4'}$$

 $n_{\rm p}$ — числа заполнения невзаимодействующих частиц. В частном случае основного состояния (4') совпадает с (4). Сумма выражений (25) и (26') при $\varepsilon' = \varepsilon_p^0$ дает энергию квазичастицы как функционал от функции распределения квазичастиц $n_{\rm p}$. Вариационная производная $\delta \varepsilon_p / \delta n_{\rm p'}$ определяет функцию $f_{\pi}(\mathbf{p}, \mathbf{p}')$, введенную Ландау (произведено суммирование по спинам *s* и *s'*):

$$f_{J}(\mathbf{p},\mathbf{p}') = 4\pi f_{0} + 32\pi^{2} f_{0}^{2} \int d\mathbf{k} n_{\mathbf{k}} \left\{ P \frac{1}{k^{2} + \mathbf{p}\mathbf{p}' - \mathbf{k} (\mathbf{p} + \mathbf{p}')} + P \frac{1}{(\mathbf{p}' - \mathbf{k})(\mathbf{p}' - \mathbf{p})} - P \frac{1}{(\mathbf{p} - \mathbf{k})(\mathbf{p}' - \mathbf{p})} \right\}.$$
(42)

Используя формулу (11) работы [7], получаем выражение для эффективной массы частиц на границе Ферми, совпадающее с (36).

5. Оценка отброшенных графиков. Высшее приближение

В разделе 2 при оценке отброшенных графиков мы учитывали дополнительное взаимодействие с частицами фона, осуществляемое однократным лействием потенциала V(д) (овин понончитоли

действием потенциала V(q) (один дополнительны пунк.ир). В сл.чае ч.по мост.. .еории возмущений такая це к по льн. Бо. овское приближение представляет собой первый б шой член ряда, сумма которого (амплитуда рассеяния) мала. Для правильной оценки необходимо суммировать графики, отвечающие всем порядкам взаимодействия реальных частиц газа, т. е. всю лестницу пунктиров, соединяющих пве одинак во чаправленчы сплошчые лилии. Эта суммар вн эффек и ном, по нциалу _заимодействия Г. Таким образом, п и пост оении графиков удобнее пользоваться эффективным потенциалом Г (квадрат), а не потенциалом U (пунктир).

Простейший из отброшенных нами графиков изображен на рис. 6. Для оценки величины Σ_3 , определяемой этим графиком, достаточно учесть Г в первом, по газовой малости, приближении $\Gamma \approx f$. Тогда

$$\Sigma_{8} = if^{3} \int dp_{1} dp_{2} dp_{4} G_{0}(p_{1}) G_{0}(p_{2}) G_{0}(p_{1} + p_{1} - p_{2}) G_{0}(p_{4}) G_{0}(p_{4} - p_{2})$$
(43)

Нам важно доказать сходимость интеграла (43), так как в этом случае его величина может определяться только импульсом p_0 (мы предполагаем, что импульс частицы близок к p₀) и Σ₃ из соображений размерности должно иметь порядок p₅f³. После интегрирования по четвертым компонентам импульса число энергетических знаменателей в (43) сокращается до двух. Производя интегрирование по импульсу р2, получаем конечную величину, имеющую порядок обратного импульса. Существенно, что два оставшихся интеграла по p_1 и p_4 берутся по области, ограниченной импульсом Ферми p_0 . Действительно, в нашем приближении Г не зависит от четвертых компонент импульса, т. е. взаимодействие происходит в один момент времени. Поэтому линии, соответствующие импульсам p_1 и $p_3 = p + p_1 - p_2$, образуют замкнутую петлю и одна из этих линий отвечает распространению дырки (ср. график рис. 1). Так как импульс дырки меньше границы Ферми p_0 , то должно выполняться одно из двух условий $p_1 < p_0$ или $|\mathbf{p} + \mathbf{p}_1 - \mathbf{p}_2| < p_0$. В любом из этих двух случаев область изменения p_1 ограничена. То же рассуждение для линий с импульсами p_4 и $p_5 = p + p_4 - p_2$ приводит к ограничению области интегрирования для p_4 . Таким образом, сходимость интеграла доказана и Σ_3 имеет порядок

$$\Sigma_{\overline{a}} \sim p_0^5 f^3 \sim p_0^2 n f^3.$$
 (44)

В заключение автор приносит глубокую благодарность А. Б. Мигдалу и С. Т. Беляеву за плодотворные дискуссии и А. Ф. Горюнову за помощь при вычислениях.

ПРИЛОЖЕНИЕ

Получим некоторые соотношения для амплитуды рассеяния f. Умножая равенство (18) основного текста на $\psi_k^*(\mathbf{p}')$ и интегрируя по k, находим, с учетом полноты системы функций ψ :

$$V(\mathbf{p}-\mathbf{p}') = \int d\mathbf{k} f(\mathbf{p},\mathbf{k}) \psi_{\mathbf{k}}^{*}(\mathbf{p}').$$

или, подставляя для $\psi_{k}(\mathbf{p}')$ выражение (19),

$$V(\mathbf{p} - \mathbf{p}') = f(\mathbf{p}, \mathbf{p}') + \int d\mathbf{k} \, \frac{f(\mathbf{p}, \mathbf{k}) f^*(\mathbf{p}', \mathbf{k})}{k^2 - p'^2 - i\delta} \,. \tag{I}$$

Используя условие эрмитовости потенциала, из (I) можно получить следующую формулу:

$$f(\mathbf{p},\mathbf{p}') - f^*(\mathbf{p}',\mathbf{p}) = \int d\mathbf{k} f(\mathbf{p},\mathbf{k}) f^*(\mathbf{p}',\mathbf{k}) \left\{ \frac{1}{k^2 - p^2 + i\delta} - \frac{1}{k^2 - p'^2 - i\delta} \right\}.$$
 (II)

Для случая равных по модулю векторов р и р' главные значения интегралов взаимно уничтожаются и (II) принимает вид

$$f(\mathbf{p},\mathbf{p}') - f^*(\mathbf{p}',\mathbf{p}) = -2\pi i \int d\mathbf{k} f(\mathbf{p},\mathbf{k}) f^*(\mathbf{p}',\mathbf{k}) \,\delta(p^2 - k^2). \tag{III}$$

При рассеянии в центрально-симметричном поле $f(\mathbf{p}, \mathbf{p}')$ для p = p' может зависеть только от p^2 и **pp'**, откуда $f(\mathbf{p}, \mathbf{p}') = f(\mathbf{p}', \mathbf{p})$ и из (III) получаем

Im
$$f(\mathbf{p}, \mathbf{p'}) = -\frac{1}{16\pi^2} \rho \int d\mathbf{n} f(\mathbf{p}, \rho \mathbf{n}) f^*(\mathbf{p'}, \rho \mathbf{n})$$
 (IV)

([n] = 1). Формула (IV) содержит, как частный случай, известное соотношение между мнимой частью амплитуды рассеяния на угол 0 и полным сечением.

Московский инженерно-физический институт

Поступила в редакцию 12 июля 1957 г.

Литература

[1] В. М. Галицкий, А. Б. Мигдал. ЖЭТФ, этот выпуск, стр. 139.

[2] K. Huang, C. N. Yang. Phys. Rev., 105, 767, 1957.

[3] А. А. Абрикосов, И. М. Халатников. ЖЭТФ, 33, 1154, 1957.

[4] T. D. Lee, C. N. Yang. Rhys. Rev., 105, 1119, 1957.

[5] А. Б. Мигдал. ЖЭТФ, 32, 399, 1957.

[6] С. Т. Беляев. ЖЭТФ (в печати).

[7] Л. Д. Ландау. ЖЭТФ, 30, 1058, 1956.

ENERGY SPECTRUM OF A NONIDEAL FERMI GAS

V. M. Galitsky.

The energy spectrum and energy of the ground state of a nonideal Fermi gas with a repulsive interaction between the particles have been found by expanding in powers of the ratio of the potential range to the mean distance between the particles (gas approximation). The first two terms of the expansion have been obtained.